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SUMMARY 

 

The developments of new technologies for commercial aviation involve 

significant risk for technologists as these programs are often driven by fixed assumptions 

regarding future airline needs, while being subject to many uncertainties at the technical 

and market levels. The effect of these uncertainties is further compounded by the fact that 

development programs are long and uncertainties continue to evolve after the aircraft and 

engine designs are frozen. Despite this overwhelming uncertainty, technologists must still 

assess the economic viability of these development programs. Unfortunately, standard 

methods used for capital budgeting are not well suited to handle the uncertainty 

surrounding such developments.  

In this Ph.D. research, a novel methodology is formulated for the analysis of 

research and development (R&D) programs. This research is motivated by three 

observations: (1) integrating competitive aspects such as strategy selection in a 

competitive environment early in the design process ensures that development programs 

are robust with regards to moves by the competition; (2) disregarding managerial 

flexibility undervalues many long-term and uncertain research and development 

programs; and (3) windows of opportunities emerge and disappear, and manufacturers 

could derive significant value by exploiting their upside potential. 

The main objective of this work is therefore to answer the following overarching 

question: “Within the context of aerospace research and development optimization, how 

can value-based design methodologies be improved to identify precursors of 

technological and market opportunities?” In addition, the improvements need to be able 
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to “reflect the specific challenges associated with long-term and uncertainty-plagued 

aircraft and engine developments, and to account for the competitive nature of the 

business”. 

In order to overcome these challenges, a method based on real options analysis 

and cross-fertilizing different techniques borrowed from the fields of quantitative finance, 

actuarial sciences, and statistics is proposed to study the timing of staggered investments 

under uncertainty and competitive pressure. Real options analyses have been proposed in 

the past to address some of these points but the adoption has been slow, hindered by 

constraining frameworks and unrealistic assumptions. In a symposium held at 

Georgetown University, a panel of academics and practitioners has identified a set of 

requirements, known as the Georgetown Challenge, that real options analyses must meet 

in order to get more traction and wider acceptance amongst practitioners. In a bid to meet 

some of these requirements, this research aims at proposing a method to help substantiate 

decision making for R&D while having a wider domain of application and an improved 

ability to handle a complex reality compared to more traditional approaches. 

The method, named FLexible AViation Investment Analysis (FLAVIA) aims at 

addressing and bridging two gaps identified in traditional capital budgeting techniques: 

(1) the evaluation of long-term technology development programs featuring decision 

tollgates in the presence of significant market uncertainty; (2) the generation of trigger 

boundaries at decision tollgates of a development program to help decision-makers 

identify trigger events of successful developments and to substantiate investment 

policies. Besides these analyses, various investigations may also be performed using the 

FLAVIA economic evaluation platform such as sensitivity studies to understand how 
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robust investment policies defined using the trigger boundary are with respect to 

competitive and technical perturbations.  

The proposed method is based on (1) a Monte Carlo technique to value research 

and development programs with early-investment possibilities, (2) a non-parametric 

exponential tilting of probability distributions to express the evolution of investment 

revenues in a different but equivalent probability measure, and (3) a bootstrap resampling 

technique to generate trajectories representing the evolution of the research and 

development program revenues over time.  

The proposed methodology builds upon real options techniques that have been 

proposed over the years and has been developed with practitioners in mind: it provides 

analysts with a clear and transparent process to perform staggered investment 

evaluations. First, the method uses widely accepted Monte Carlo simulations in order to 

handle multiple, possibly correlated, uncertainties. Monte Carlo simulations also offer a 

rich environment enabling analysts to use non-traditional stochastic processes that may 

be better suited to model a complex reality. Next, stochastic models representing the 

evolution of uncertainties over time are calibrated under the physical probability measure 

since this is the natural measure to use to calibrate models with any source of market data 

available. Because the simulation of multiple and possibly correlated uncertainty models 

may result in a development program revenue process with unknown characteristics, a 

non-parametric probability measure transformation is suggested using the time-honored 

Esscher transform. This tiling enables a simple and transparent transformation of the 

development program revenue process from the physical probability measure to the 

equivalent martingale probability measure typically used for option pricing purposes. The 
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development program revenue process, now simulated under the equivalent martingale 

measure, is resampled to generate non-weighted trajectories representing its evolution 

over time under the new measure. This enables the use of the Longstaff-Schwartz least-

squares Monte Carlo algorithm to both generate the trigger boundary and estimate the 

development program value. 

The FLAVIA method is first subjected to preliminary testing on a set of canonical 

examples so as to check the quality of the results before moving on to a more exhaustive 

verification and validation. Preliminary testing indicates that the estimations of real 

option values are accurate but that the generation of the trigger boundary suffers from 

excessive noise, rendering its use for decision-making questionable. As a result, several 

techniques are suggested to improve the method. These include (1) the use of moment 

matching and control variates sampled at the exercise of the path-dependent real options 

to reduce the variability in the results, (2) the scoping of the continuation value 

regressions used in the least-squares Monte Carlo algorithm to improve the quality of 

regressions, (3) a three-step filtering and regression of the locus of critical prices which 

constitutes the trigger boundary, (5) the use of Sobol’s low-discrepancy sequences in lieu 

of pseudo-random numbers in (Quasi-) Monte Carlo simulations, and finally (4) the use 

of a two-stage least-squares Monte Carlo algorithm using a newly proposed Multi-Start 

Monte Carlo simulation.  

All, but one, of the techniques drastically improve the accuracy of the results and 

significantly reduce the noise in the trigger boundary. Sobol’s low-discrepancy sequences 

exhibit disappointing results however and are abandoned. With the successful 
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implementation of these refinements, the FLAVIA method is first verified extensively 

and then validated using a proof-of-concept application. 

The proof-of-concept application is a Performance Improvement Package (PIP) 

development. The package is a set of technologies that can be retrofitted on a currently 

operating turbofan engine. The PIP development timeline is staggered with several 

phases and the value of the development program is driven to a large extent by the 

volatile jet-fuel price and to a lesser extent by the uncertain price of carbon emission 

allowances. In order to perform the economic evaluation of the PIP, the benefits to the 

operators (airlines) are quantified using the newly-developed Integrated Cost And 

Revenue Estimation method (i-CARE). Both the i-CARE and FLAVIA methods are 

implemented and linked together to analyze the PIP development program. 

Results indicate that both managerial and timing flexibility have statistically 

significant values which are unaccounted for in typical discounted cash flow analyses. 

Trigger boundaries are generated and highlight the difference between a discounted cash 

flow-based investment policy and an optimal real option-based investment policy. The 

research concludes with several suggested improvements and extensions to the FLAVIA 

method.  
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CHAPTER 1: INTRODUCTION 

 

 Whether it be in a backyard workshop or inside a bicycle shop, neither Clément 

Ader nor Otto Lilienthal or the Wright Brothers probably understood the impact their 

flying machine inventions would have over mankind. Over the course of a century, 

private ventures led by self-driven individuals have evolved and given birth to a whole 

new industry at the forefront of technical and technological innovation while generating 

millions of jobs worldwide and drastically shifting the paradigms of travel and 

commerce. As the demand for air transportation grew, the requirements for faster and 

more reliable vehicles slowly evolved into requirements for more efficient and more 

environmentally-friendly vehicles. At the same time, the whole aerospace industry 

transformed itself into a complex mesh of stakeholders including manufacturers, 

suppliers, regulators, ground facility providers, maintenance providers, air traffic 

controllers, air carriers, and finally air travelers. 

 In its 2012 surveys [1], the Aerospace Industry Association (AIA) reports that, in 

the United States alone, the aerospace industry as a whole is employing 629,000 workers 

(including 430,000 directly related to the design and manufacture of aircraft, engines, and 

parts), has revenues exceeding 217 billion dollars (of which 118 billion dollars are 

aircraft-related with a backlog of over 2,600 aircraft), generates profits in excess of 20 

billion dollars, and finally exhibits the highest positive trade balance of all major 

American industries with a surplus estimated over 63 billion dollars. Such glittering 

statistics is bound to attract some attention. 
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1.1 Aircraft manufacturing industry 

The aerospace industry is very diverse. It encompasses a multitude of 

commercial, industrial, and military applications and spans a wide range of interests 

stretching from the design and manufacture, to the operation and maintenance of vehicles 

moving within the Earth atmosphere or further away in space. In the remainder of this 

document, the focus will be mostly on civil commercial application within the aircraft 

manufacturing industry.  

Over the course of the first half of the XXth century, the aircraft manufacturing 

industry has sailed through its infancy. It was characterized by a multitude of 

manufacturers, each coming up with its own unique and sometimes extravagant design. 

During the second half of the XXth century, the young industry was characterized by a 

frantic effort to extend the overall flying envelope and to investigate the entire design 

space of aerial vehicles including specialized ones with the ability to hover or to fly at 

hypersonic speeds. By the turn of the new century, the industry has reached a mature 

status whereby most of the aircraft manufacturers have converged to a single aircraft 

configuration, the tube and wing conventional configuration. Nowadays, each new 

aircraft design iteration seems to consist mostly of further refinements and optimizations 

of this very configuration. 

While the industry was going through these stages, the resources required to 

design, fly, and certify new aircraft kept growing. The investments required to fund the 

development of new aircraft forced the industry to transform itself. Many family-run 

private manufacturers were unable to cope with these radical changes and were forced to 

either merge and survive (Breguet Aviation and Dassault Aviation) or disappear (de 
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Havilland Aircraft Company). Later on, as the industry was maturing, much larger 

manufacturers were also forced to either merge (McDonnell Douglas and Boeing) or 

close doors (Fokker). This progressively led to a consolidation of the industry and 

eventually resulted in an industry dominated by two manufacturers of larger commercial 

aircraft, three manufacturers of smaller regional aircraft, and a handful of manufacturers 

of general aviation aircraft. At the lower end of the commercial aviation spectrum, ATR, 

Bombardier, and Embraer are registering most of the orders for aircraft with a capacity 

under one hundred seats, whereas at the other end of the commercial aviation spectrum, 

Airbus and Boeing are registering most of the orders for aircraft with a capacity greater 

than one hundred seats. On the general aviation side, Cessna, Bombardier, Gulfstream, 

and Dassault are taking most of the orders for larger private jets, while Cessna, Cirrus, 

and Diamond are getting most of the orders for smaller private aircraft. 

1.2 Aircraft design process 

Hazelrigg defines the design activity as the “Use of available information to make 

intelligent decisions leading to optimal solutions.” A dissection of this definition yields 

several important notions that are going to be analyzed next in the context of aircraft 

design. 

The term ‘available information’ refers to the fact that designers are not scientists 

but rather engineers. Thus, their goal is not to push the state-of-the-art in terms of 

scientific knowledge. Instead, they strive to monitor, review, and finally use relevant 

pieces of knowledge to establish models for the purpose of sizing and designing an 

aircraft.  
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The term ‘intelligent’ refers to the fact that the models used are neither trivial nor 

black boxes. Making an intelligent decision requires some understanding of the 

underlying physics as well as of the data underpinning these models. In turn, this implies 

having an understanding of the limitations and suitability of these models for a specific 

application. This also requires a good understanding of their inputs and outputs, and of 

their respective level of uncertainty and accuracy. 

The term ‘decision’ implies the existence of choices that designers must 

substantiate when confronted with sets of alternatives. Often, there is more than a single 

design that meets the requirements set forth by the end-customers, but some are better 

than others. However, designers do not always have a detailed understanding of the 

impacts of their design choices. Similarly, they may not have a definitive set of operating 

conditions for their design as requirements creep and design missions evolve. There is 

therefore a need to make and substantiate decisions with incomplete and uncertain 

knowledge. 

Finally, the term ‘optimal solutions’ implies the presence of trade-offs and of non-

trivial answers to the task to be completed. By nature, the aircraft design environment is 

multi-disciplinary, encompassing disciplines as diverse as aerodynamics, control theory, 

structural engineering, material sciences, chemical engineering, and many others. Since 

aircraft are more and more complex, they need to be viewed as systems-of-systems with 

conflicting requirements and constraints. Because a system-of-systems is usually greater 

than the sum of its systems, each system shall not be optimized independently of the 

others but rather concurrently with all the others. The essence of a designer’s task is 
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consequently to provide a synthesis through the means of multi-disciplinary 

optimizations. 

1.2.1 Different phases of design 

Having defined what the design activity involves, it should be clear that designing 

an aircraft is a complex multi-step and multi-disciplinary process. As such, the aircraft 

design process is usually decomposed into three phases: the conceptual design, the 

preliminary design, and the detailed design. Together with the flight testing and 

certification phase, these four phases form the aircraft development process.  

During the conceptual design phase, the customer needs and requirements are first 

analyzed to answer some basic questions regarding the configuration of the design, the 

technologies to be used, the first weight estimations, and some primary analysis of the 

economic viability of the aircraft. Design requirements may include aircraft capacity, 

aircraft range, payload, take-off and landing distances, as well as emissions and noise 

thresholds. Using these design requirements, a sizing and synthesis of the aircraft is done 

next to ensure that requirements are met. An increasing number of trade-off analyses are 

performed to get more and more knowledge about the design configuration and its 

performance. Raymer [2] argues that the design at this stage is very fluid, evolving by the 

week as more and more sophisticated analyses are performed for every aspect of the 

design. Parametric studies and design space explorations are used to speed-up analyses in 

such a fluid design environment and to ensure that different alternatives are reviewed 

before a preferred design is eventually selected. 

The next phase of the design process is the preliminary design phase which 

usually starts whenever major changes to the aircraft configuration are unlikely to occur. 
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It is characterized by a maturation of the selected design. During the preliminary design 

phase, experts from all disciplines are involved to design and analyze their part of the 

aircraft and to prepare for the detailed design stage. The preliminary design phase ends 

when the configuration of the aircraft is frozen and when experts have established 

confidence that the aircraft can be built on time, according to specifications, and for the 

projected budget. 

The last phase of the aircraft design process is the detailed design phase during 

which the full scale development of the aircraft takes place. This is the most expensive 

part of the design process as detailed models are created for each and every part of the 

aircraft. Many sub-assemblies are created and tested. This is also the phase during which 

the production design takes place. During production design, engineers determine how 

the aircraft will be fabricated and what production tooling will be required. The detailed 

design phase ends with the production of the very first aircraft. 

According to Schrage [3], the traditional development process can be described as 

shown in Figure 1. Looking more closely at the different phases of this design process, it 

appears that the commitment required from aircraft manufacturers increases with time. 

Indeed, Raymer [2] indicates that conceptual design may stretch from a couple of weeks 

up to half a year while preliminary design may stretch from a couple of months up to two 

years and detailed design may last for over two years. At the same time, as the design 

progresses through these different phases, the number of people involved keeps 

increasing, and the analyses carried out get deeper and deeper as more and more fidelity 

is required.   
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Figure 1: Traditional Development Process (adapted from [3]) 

1.2.2 Modern system design methods 

By definition, aircraft and engine design is a multi-disciplinary endeavor. Over 

the years, Original Equipment Manufacturers (OEM) have developed or borrowed 

various systems engineering methods and processes to help them in their design tasks. A 

full review of all these methods and tasks is beyond the scope of this section but several 

of the most relevant methods are presented in the following paragraphs. 

Integrated Product and Process Development 

It is well known that the freedom to alter a design decreases substantially as it 

matures from a concept blueprint to a full scale production. At the same time, the costs 

induced by changes increase significantly as the design matures. In this context, 
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manufacturing decisions cannot wait for the design to be frozen. Tightly coupled design 

and manufacturing decisions must be made concurrently early in the design using the 

concurrent engineering approach defined as a “systematic approach to the integrated, 

concurrent design of product and their related processes, including manufacture and 

support” [4].  This approach has emerged as an effective way to drive Total Quality 

Management in each stage of a product life-cycle. Its underpinning philosophy is to bring 

together experts from the different phases of both the product (aerodynamics, propulsion, 

structure) and the manufacturing (producibility, supportability) processes early-on with 

the ultimate goal of minimizing the overall life-cycle cost of the product designed.  

The Integrated Product and Process Development (IPPD) methodology was 

developed to implement this concurrent engineering approach for the purpose of 

aerospace design. This methodology, described by Marx. et al. [5], is illustrated in Figure 

2 and depicts the interactions of four key elements to enable parallel product and process 

trades to be made: systems engineering methods, quality engineering methods, a top-

down design decision support process, and a computer integrated environment. Beneath 

these, the interactions necessary to perform the parallel product and process trades are 

described. Using this methodology, knowledge is brought forward in the design process 

yielding greater flexibility to decision-makers. Higher fidelity trade-off analyses can then 

be performed early-on in the design to leverage the inexpensive design freedom still 

available. Indeed, the system synthesis is performed using a multi-disciplinary design 

optimization environment in which sets of alternatives are generated. For each of these 

feasible alternatives, an adequate risk assessment and uncertainty analysis are performed 

early-on with regards to performance, costs, and schedule. 
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Figure 2: Georgia Tech IPPD methodology adapted from Marx et al. [5] 
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Reconfigurable Matrix of Alternative (IRMA) [6] has been developed and proposes a 

systematic qualitative procedure to decompose the design, identify alternatives, and 

check for compatibilities. To tackle the second level, Monte Carlo simulations may be 

used to investigate design viability and overall vehicle performance for different levels of 

the design variables. This is performed by treating design variables as random variables 

and assigning distributions to them (usually uniform distributions at this stage) instead of 

single point estimates. This process is illustrated in Figure 3. 

 

Figure 3: Design space exploration 
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design space that must be explored. Indeed, aircraft are large systems-of-systems defined 
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required. Instead, faster surrogate models or metamodels may be used to speed-up the 

Monte Carlo simulations and perform a better sampling, and consequently a better 

exploration, of the design space. 

Surrogate Modeling 

In the quest to reduce uncertainty and to mitigate risks, improvements to current 

physics-based models keep being made. These result in more accurate predictions of 

performance estimates of future aircraft and engine designs. These simulation models 

reflect the advancement of science and the greater knowledge and understanding 

engineers have of the environment they are working on. As these models achieve higher 

and higher fidelity, they usually grow in complexity and are therefore an impediment to 

the fast evaluation of alternatives as required for the design space exploration previously 

described. Indeed, routine tasks such as sensitivity analysis, design optimization, and 

what-if analysis may become impossible because they require millions of simulation 

evaluations and each of these evaluations may take hours or even days to run and to fully 

converge.  

Surrogate modeling designates the activity of building models of models in order 

to speed-up analyses and to alleviate the burden of running many times the same high 

fidelity physics-based models. Surrogate models are constructed using a data-driven 

approach in which results from the higher fidelity models are used to yield simpler and 

more manageable models while still retaining most of the accuracy of the underlying 

physics-based models.   



www.manaraa.com

12 

 
Figure 4: Generation of surrogate models 

The generation of surrogate models is described in Figure 4. The data used in the 

construction of surrogate models may be generated through controlled experiments or 
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constructed. In this case, results from the surrogate model are directly compared to data 

provided by lab experiments or higher fidelity physics-based models.  

Robust Design Simulation 

The purpose of robust design simulation is to ensure that the design under review 

is robust with regards to external and internal perturbations. The emphasis on robust 

design comes hand in hand with the philosophy of quality planning and Taguchi’s 

observations [7] that it is often cheaper to make a process insensitive to manufacturing 

variations than to control the causes of these variations. Robustness analysis helps by 

providing an estimation of the sensitivity of outputs to the variability of inputs described 

in terms of random variables and probabilistic distributions. 

In the IPPD methodology presented earlier, Robust Design Simulation is 

performed using surrogate models of physics-based models to speed-up sensitivity 

analyses along with Monte Carlo simulations to model the variability of inputs. Indeed, 

probabilistic distributions are used to model uncertain parameters which abound during 

the design of aircraft and engines. Technology benefits for instance are better assessed by 

ranges rather than by single number estimates because they have yet to be corroborated 

and tested in the operating environment. Economic inputs, such as energy prices, may 

also be well served by ranges because they usually exhibit substantial volatility and 

change drastically over time. Probabilistic assessments are carried out as shown in Figure 

5 to ensure that the design satisfies the customer needs and meets all constraints and 

requirements in an uncertain environment with uncertain technology benefits. According 

to Mavris and Bandte [8], the end-purpose of robust design simulation is to come up with 
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“a design that performs well in the environment for which it was designed but also in all 

environments”.  

 

Figure 5: Robust Design Simulation (adapted from Mavris and Bandte [8]) 
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monetary unit. This approach allows designers to compare different designs in terms of 

value scores and therefore to rationally make design decisions.  

1.3 Traditional challenges 

The design and production of aircraft is a complex and challenging process 

encompassing many disciplines ranging from market research to mechanical engineering 

and supply chain management. This process has traditionally been riddled with 

uncertainties and these uncertainties create many different types of risks spanning from 

market risks to technical risks, supply chain risks, and schedule risks. The overwhelming 

number of “things that may go wrong” during the design stage is probably one of the 

reasons so many aircraft designs have been struggling to become profitable [10] and the 

reason some of the newest aircraft developments have seen their development schedule 

slip over time [11]. 

1.3.1 Major investments and limited returns 

One of the main challenges facing aircraft manufacturers is the unsustainable 

development costs required to fully research, develop, certify, and produce new aircraft. 

Although these investments are significant barriers to entry for new competitors and are 

therefore preserving the market for established players, development costs upward of ten 

billion dollars are in fact betting the future of the airframe and engine manufacturers as 

shown in Table 1. On the engine manufacturing side for instance, Rolls-Royce went into 

administrative receivership in 1971 after encountering technical problems while 

designing the new triple spool RB211 turbofan for the Lockheed L-1011 Tristar. This led 

to production delays which, in conjunction with limited sales, jeopardized the future of 
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the Tristar program. Although the technologies developed by Rolls-Royce for the RB211 

paved the way for future commercial successes with the Trent family of triple spool high-

bypass turbofan engines, the unprofitable Tristar development program ended in 1984 

with the delivery of just two hundred and fifty aircraft.  

Besides the high investments required, it is not uncommon to see development 

cost overruns as the development programs get into the detailed design, certification, and 

production phases during which technical issues may be encountered. In such cases, some 

parts need to be redesigned and the development schedules tend to slip. Similarly, 

suppliers of large aircraft subsystems may not have the ability to ramp-up production of 

complex parts as fast as airframe manufacturer initially projected [12] leading to 

additional delays [13]. As may be seen in Table 1, most of the new programs of this past 

decade have experienced some form of delays at entry into service which have resulted in 

drastic increases of already high development costs. 

Table 1: Aircraft development costs: projected and final estimate at completion 

Aircraft Model 

(* denotes derivative) 

Projected Development 

Costs [14] 

Billion 2012-US$ 

Final Development 

Costs [15] [16] [17] 

Billion 2012-US$ 

Airbus A320 NEO* 2.0 / 

Airbus A350-A350XWB 6.5 ~15.0 

Airbus A380 12.0 ~ 15.0 

Boeing 737 Max* 3.0 / 

Boeing 787 8.0 ~ 33.0 

Boeing 777 6.0 ~ 6.0 

Bombardier C-Series 3.5 ~5.2 

 

Digging further into the high development costs and the uncertainty surrounding 

these programs, another issue seems to be the inability of aircraft manufacturers to 
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command prices that truly reflect the incremental value of the new aircraft relative to 

prior-generation products. Indeed, a substantial number of customers purchase these 

aircraft during the initial launch phase of a project once the manufacturer gets the 

authorization to offer the aircraft from its board, but before the development is 

completed. In addition, these pre-orders are often sold at a significant discount over the 

catalogue price in order to build momentum and gain market share. At this point, the 

airframe manufacturers are relying on costs projections. However, the business plan may 

underestimate development costs and program risks, leading to a significant number of 

airframes being sold at a loss or with unsustainable margins. 

1.3.2 Technical and technological risks 

Another challenge for aircraft and engine manufacturers is the management of 

technical and technological risks. Indeed, aircraft and engine manufacturers are at the 

forefront of technical and technological innovation, and pressure from both customers 

and the competition to design more and more efficient aircraft with shorter and shorter 

lead time force them to embrace new design methods, new manufacturing processes, and 

new technologies for each new aircraft. On the one hand, technical risks may be defined 

as an exposure to losses arising from the design and the manufacturing activities and is 

therefore related to the processes used by the aircraft manufacturer. The Airbus A380 for 

instance suffered major setbacks during its development because different plants within 

the company were using incompatible versions of the same software preventing them to 

update in real time the common digital mock-up of the aircraft [18]. On the other hand, 

technological risks may be defined as the exposure to losses arising from the infusion of 

new technologies into the aircraft design. It is therefore related to the maturity level of a 
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technology and the level of experience the manufacturer has with using this technology. 

The Federal Aviation Administration (FAA) for instance announced a fleet-wide 

grounding and a comprehensive review of the Boeing 787 critical systems after airlines 

reported issues and severe thermal runaways with the new lithium-ion batteries. At the 

end of 2014, the root-cause of these thermal runaways was still unknown and only 

palliative solutions had been provided by the manufacturer [19]. This is a prime example 

of technological risks taken during design by incorporating technologies not yet fully 

mature. 

Closely related to the technical and technological risks are the performance risks 

which may be defined as the exposure of the manufacturer to losses stemming from 

unreached performance targets by the aircraft. Justin and Mavris [20] report that it is 

common for original equipment manufacturers to offer performance guarantees as well as 

“power-by-the-hour” type of maintenance contracts. These contracts are becoming very 

popular for engines: they allow the operators to pay a fixed price, set in advance, to cover 

the maintenance expenditures. The purpose of these contracts is to shift some of the 

operating risks from the airlines back to the manufacturers. As a consequence, original 

equipment manufacturers are now more than ever exposed to these performance risks: if 

the performance targets are not met, the manufacturers are liable in terms of 

compensations and penalties. In addition, if the operating costs of the aircraft are within 

specifications but higher than the design targets, they might still be exposed to some risks 

through the maintenance contracts signed by the manufacturers. 
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1.3.3 Timescale to bring new aircraft to the market 

Another great challenge for manufacturers is related to the timescales involved. 

Aircraft developments are usually measured in years, typically ranging from two to three 

years for derivative aircraft and from five to eight years for brand new designs. Beyond 

the development phase, aircraft may remain in production for ten to twenty years leading 

to an overall program horizon of up to thirty years. However, the world does not remain 

static meanwhile and the needs, requirements, and regulations evolve. On the evolving 

requirements side, it is well accepted that the main reason for the commercial failure of 

Concord was the steep raise in energy prices after the 1973 oil crisis leading to 

unsustainable supersonic operations and reduced airlines’ interest. On the evolving 

regulations side, the commercial success of the four-engine Airbus A340 was 

substantially hampered by the evolving Extended Operations (ETOPS) regulations set 

forth by the Federal Aviation Administration that initially constrained twin-engine 

aircraft operations to airspaces close to diversion airports. As these regulations were 

extended, new certification levels were created allowing more and more routes to be 

flown by more efficient twin-engine aircraft and the need for four-engine aircraft 

progressively vanished. 

At the same time, the airline industry is quite volatile with periods of acute crisis, 

low profitability, and scarce demand for new aircraft followed by periods of rapid 

expansion with greater profitability and increased demand for new capacity. Liehr et al. 

[21] argue that one of the root-cause of this cyclical behavior is endogenously generated 

by the long lead times between aircraft order and delivery, the rush for additional 

capacity during profitable periods leading to significant aircraft deliveries, and excessive 
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capacity industry-wide several years down the road. This cyclical behavior is further 

exacerbated by the elastic nature of the demand for air transportation which contracts 

significantly during periods of crisis and expands significantly during periods of growth. 

All in all, the uncertainties surrounding the airline industry coupled with the timescales 

involved for aircraft development force aircraft and engine manufacturers to speculate 

during the design stages regarding the size of the market, the future airline needs, the 

future certification requirements, and more generally, the future states of the world. 

1.3.4 Supply chain management 

Finally, another source of headaches for producers is related to the management 

of the supply chain. Over the course of the past decades, the network of suppliers has 

grown significantly and what used to be a limited number of partners designing some 

specific systems of the aircraft (such as the engine, the landing gear, and the auxiliary 

power unit) has evolved into a vast network featuring thousands of suppliers. These 

suppliers are classified in tiers according to how close they work with the airframer: tier-

one suppliers work directly with the airframer, tier-two suppliers work for the tier-one 

suppliers, and tier-three suppliers work for the tier-two suppliers [11]. Such a complex 

multi-tiered supply chain spread all over the world calls for a significant increase in 

managerial oversight on the part of the airframer to ensure that partners deliver on time 

and within specifications and to ensure delays and costs overrun are minimized. Recent 

history with the developments of the Airbus A380 and the Boeing 787 has shown that this 

is not a trivial task. For instance, some of the delays of the 787 were attributable to poor 

oversight by Boeing of its network of suppliers [22]. 
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1.4 Emergence of new challenges 

1.4.1 Longer development cycles increase risk 

In the previous section, the issue regarding the long development and certification 

times involved in aircraft design was raised. What is troubling is the evolution of these 

timelines: as aircraft get more and more sophisticated, the time to develop and certify 

grows substantially, going from an average of four years in the fifties to over eight years 

for recent designs. Some examples are provided in Table 2. This might sound 

counterintuitive given the advances made in the past two decades in Computer Aided 

Design (CAD) and in virtual manufacturing which were supposed to speed-up design 

tasks. However, at the same time, aircraft have become major interconnected systems-of-

systems loaded with intelligent sensors and health monitoring devices. For instance, the 

Airbus A380 is equipped with over 100,000 different wires totaling a length of 530 

kilometers [23]. Designing such a piece of machinery is quite different from designing a 

plain metallic tube and wings featuring simple hydraulic systems as was done in the 

fifties.  

At the same time, the world is uncertain, the global airline industry is uncertain, 

and the price of energy, one of the key aspects of airline profitability, is uncertain. Alan 

Joyce, CEO of Qantas [24], argues that the unprecedented volatility continues to shake 

and shape the aviation industry as a whole. However, it would be naïve to believe that 

this increase in volatility does only affect the aviation industry. Aircraft and engine 

manufacturers must also adapt themselves and their design processes to handle this 

volatile environment. For these manufacturers, the long development and certification 
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timelines in conjunction with the increased market volatility compound the uncertainties 

and therefore the risks.  

Table 2: Aircraft development times 

Aircraft Model 

(* denotes projected) 

Entry Into Service 

(Date) 

Development Time  

(Years) 

Boeing 707 1959 4 

Boeing 747 1970 4 

Airbus A320 1988 4 

Bombardier CRJ100 1992 4 

Boeing 777 1995 5 

Airbus A380 2007 7 

Embraer E-170 2004 5 

Boeing 787 2011 7 

Airbus A350 2015 8 

Bombardier CS100* 2016* 9* 

In this context, it becomes paramount for this industry to be able to react to 

unforeseen changes in the business environment, to update business plans as uncertainty 

unfolds, and more generally, to become more flexible. 

Observation: 

Aircraft and engine developments are characterized by longer and longer development 

cycles and are therefore subject to significant risk due to the uncertain and volatile 

business environment. Design methods and design processes must evolve accordingly to 

provide enough flexibility to managers to steer programs into profitable directions as the 

uncertainty unfolds. 
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1.4.2 New competition emerging 

Curiously enough, the aircraft manufacturing industry does not exhibit one 

characteristic trait of mature industries which are often described as having stagnant or 

declining profits leading to a reduced attractiveness for new entrants in the competition. 

Indeed, in its 2012 surveys [25], the AIA reports that the net profits of this industry keep 

increasing despite some cyclical variations and the profit margins increase as well to a 

lesser extent. Using the example of commercial transport and more particularly the short- 

to medium-haul single aisle market, Justin et al. [26] claim that after years of declining 

competition (with the exit of McDonnell Douglas, Tupolev and Yakholev), the 

competition is drastically increasing with new offerings from established aircraft 

manufacturers (Bombardier C-Series, Sukhoi SSJ-100) as well as new designs from new 

entrants from Russia (Irkut MS-21), Japan (Mitsubishi MRJ) and China (Comac C919).   

The aerospace industry has been traditionally regarded as an entrenched industry not 

vulnerable to the threat of new competitors and several reasons are underpinning this 

paradigm. Historically, manufacturers in Europe, the United States, and the former Soviet 

Union have been at the forefront of aerospace developments and have therefore 

accumulated years of experience, skills, and know-how to develop new aircraft. Next, the 

high barriers of entry into this industry are essentially preventing other competitors from 

entering the market. Indeed, airlines are expecting a high level of maturity for their newly 

acquired aircraft and engines at entry into service so as not to add risk to their own 

operations. These customers are therefore reluctant to place orders to new manufacturers 

with limited track record of their ability to deliver on time and on specifications. In 

addition, airlines require the availability of global networks of spare parts and 
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maintenance facilities in order to limit downtime and schedule disruption when 

unexpected maintenance arises. This hinders the ability of new competitors to enter the 

market as these networks are costly to setup and operate. 

However, the state of the business is quickly evolving and the competitive 

landscape is being remodeled for the coming decades. The biggest growths in demand for 

air transportation are coming from China and India, and experts do not foresee any 

changes to this in the coming years [27]. As these markets continue to grow, the demand 

for additional capacity and new aircraft are bound to increase which will probably nurture 

the aspiration of the homegrown industry to play a larger role in the aircraft and engine 

developments. In addition, Friedman [28] argues that the educational expertise of 

Chinese and Indian schools has been comparable to that of Western schools for several 

years, meaning that an educated and skilled workforce is available to fulfill the 

aspirations of these homegrown industries.  

Besides, it is no secret that there has been a political push at the highest level in 

many developing countries, and particularly in China, to become more independent of 

Western and Russian aircraft manufacturers for their booming air transportation needs. In 

these countries, policies have been set up to help nurture, grow, and develop the local 

aerospace industry in the hope of letting them compete in the worldwide arena later on. 

This process may take many shapes but usually involves local manufacturers contracting 

work from the established aircraft manufacturers (for instance, wings of the Bombardier 

C-Series aircraft are produced by Shenyang Aircraft in China). Then, technology 

transfers are sought whenever large acquisitions are made by state-sponsored entities or 

technology acquisitions are made through the purchase of established manufacturers 
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overseas (such as the acquisition of Cirrus Aircraft by the Aviation Industry Corporation 

of China holding). Following these acquisitions, local manufacturers aim at 

subcontracting or licensing the final assembly of aircraft designs of established aircraft 

manufacturers (e.g., manufacture of McDonnell Douglas MD-90 by Shanghai Aircraft in 

China and production of Piper aircraft in Brazil under the Embraer brand). Progressively, 

this leads to the ability of the local manufacturers to both develop and manufacture self-

sufficiently new designs once the technologies are mastered and the skills and processes 

are well established (e.g. C919 aircraft by the Commercial Aircraft Corporation of 

China). 

These recent developments have led to an increase in competitive pressure while 

it is not obvious that the organic growth of the market will be able to sustain so many 

manufacturers. In this context, it becomes paramount for the aircraft manufacturers to 

account for this increase in competition while making business plans and assessing 

market penetration and profitability, as well as to offer to the market a portfolio of 

products that both meet the requirements and are differentiable from competing products.   

Observation: 

Consistent profitability and politics stir up the interest for a homegrown aircraft 

development industry which leads to a substantial increase in the competitive pressure. 

Without a corresponding growth in the aircraft demand, manufacturers will need to 

account for the competitive environment early-on in the design to ensure the business 

plan is sound and the product portfolio is both competitive and well positioned in the 

market. 
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1.5 Challenges to the aerospace industry: a summary 

In the previous sections, a brief introduction to the aircraft and engine 

manufacturing business was provided. Some design processes and methods were 

presented and have led to the identification of several challenges that are affecting 

development programs. Table 3 summarizes some of these challenges that were classified 

as either traditional, for which existing design processes and methods are well adapted, or 

newly emerging challenges, for which design processes and methods may need to be 

adapted in order to mitigate potential adverse impacts. 

Table 3: Identified challenges to the design process 

Source Traditional Challenges Emerging Challenges 

Design 
Technical risk 

Technological risk 
 

Manufacture and 

Production 

Schedule risk 

Supply chain risks 

Regulatory risk 

Increased reliance on 

tier-one suppliers 

Market Business cycle risk 
Competitive threats 

Increased market volatility 

Economics 
Development cost 

overruns 
Longer development cycles 
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CHAPTER 2: MOTIVATION 

 

The purpose of this chapter is to introduce the reader to three different cases of 

aircraft development programs. The first example analyzes some aspects of the Airbus 

A340-500 and A340-600 development, describes the lackluster sales of these aircraft, and 

highlights the need for extensive scenario investigations to ensure the design is 

economically viable in a wide variety of scenarios. The second example describes the 

way aircraft developments are currently assessed from an economic standpoint, points out 

the uncertain profitability of the Airbus A380 program, and highlights the need for 

economic evaluations that account for the flexibility offered to decision-makers. The 

third example describes the successive iterations of the Airbus A350 development and 

highlights the need for closer cooperation between aircraft manufacturers and suppliers to 

ensure a close match between technical capability and market expectations. This series of 

examples stems from observations of the aircraft industry during the past two decades 

and will contain back of the envelope calculations to highlight possible discrepancies and 

deficiencies in the current design approaches. These examples further emphasize the 

challenges and observations identified in the previous chapter in order to define where 

new methods might be warranted and what their purposes should be.  

2.1 First motivating example 

Launched in 1997, the Airbus A340-500 and A340-600 aircraft are derivatives of 

the Airbus A330 and A340 product lines and were aimed at replacing the aging family of 

classic Boeing 747 (747-100, 747-200, 747-300, and 747-SP).  While both the Airbus 
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A340-500 and A340-600 aircraft have a lot of similar systems, the former was primarily 

developed as a niche aircraft for ultra-long thin routes while the latter was developed as a 

stretch with a substantially longer fuselage, larger wings, and up-rated engines. Back in 

1997, the Airbus announcement was promising as Boeing had delivered a total of 675 

classic Boeing 747 (passenger and freight versions) and these were due for retirement in 

the subsequent years with no sign of a competing design being offered by Boeing. In 

addition, the A340-600 was launched with the goal of carrying a similar amount of 

passengers while carrying twenty-five percent more cargo at lower trip and seat costs. 

In the following paragraph, a simple economic analysis of the development 

program is performed in order to get a net present value estimate and an internal rate of 

return estimate. It is not the intention of the author to perform a deeper analysis since 

inputs for an accurate economic analysis are proprietary. Therefore, educated 

assumptions are made and summarized in Table 4. The program development costs are 

derived from the launch aids that Airbus received during the development. The United 

Kingdom provided US$200 million in repayable loan to British Aerospace [29] (which 

represents 20% of Airbus) and the launch aids were capped at 33% of the entire 

development cost. The weighted average cost of capital (WACC) of Airbus is estimated 

to be 12.5% as per documents from EADS [30]. Catalogue price of aircraft and engine 

are traditionally inflated and do not reflect what customers actually pay. Therefore, the 

aircraft are estimated to be sold at a 50% discount from the catalogue price [31]. A down-

payment of 10% of the aircraft price is done when manufacturing starts one year prior to 

delivery, and the remaining 90% are due at delivery. The manufacturing costs are 
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estimated to be 50% of the sales price. The schedule of deliveries [32] is described in 

Figure 6. 

 

A340-500/A340-600  

Development Costs 

(Billion) 

US$3.0 

A340-500 List Price 

(Million) 
US$233 

A340-600 List Price 

(Million) 
US$240 

Customer Discount  

(Catalogue Price %) 
50% 

Production Cost 

 (As Price %) 
50% 

EADS WACC 

(2003) 
12.5% 

Risk Free Rate 

(10Y T-Bond 1996) 
6% 

Table 4: Main assumptions for 

economic estimations 

 

Figure 6: A340-500 and A340-600 deliveries since program 

launch 

 

Using these assumptions, the value generated by the program is estimated using a 

discounted cash flow analysis (some more details about this type of analysis is provided 

in Chapter 3, section 3.1.2). For the sake of simplicity, this analysis is performed without 

accounting for interest or taxation effects. While most of the inputs used for this analysis 

can be substantiated with references, the production cost is highly proprietary and there is 

no reference to back this number, therefore, a very conservative estimate of 50% of the 

overall price is used. To reflect the uncertainty about this number, value estimates are 

computed with production costs ranging from 50% to 70% of the overall price and the 

results are provided in Table 5. First, let’s preface any type of analysis by saying that 

these results are rough estimates following a first order back of the envelope estimation. 
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Yet, the results are astonishing: in most cases, the analysis indicates that the program 

would incur significant losses. In fact, as long as the production cost exceeds 50% of the 

sale price, the program is at a loss. In other words, the manufacturer needs a 52% profit 

margin on sales to breakeven. This is not accounting for additional discounts given to 

launch customers and additional expenditures to fund weight reduction programs (lighter 

wings) and other refinements (increased gross weight versions).  

Table 5: Economic estimation for the value of the A340-500/600 programs 

Production Cost 

(As % of Price) 
40% 50% 60% 70% 

Project Value 

(Estimation in Million US$) 
572 -36 -644 -1252 

Project Internal Rate of 

Return (IRR in %) 
3.32% -0.22% -4.05% -8.19% 

 

What happened? In fact, the answer lies in the sales forecasts. Over the course of 

the program, Airbus delivered only 130 aircraft in a market which was calling for at least 

675 classic Boeing 747 replacements (assuming no organic growth). Additionally, Boeing 

launched the development of two competitor aircraft in 2000, namely the Boeing 777-

200LR and Boeing 777-300ER which have reached over 655 deliveries [33] as of June 

2013. Even though both aircraft types have similar capabilities (A340-600 and 777-

300ER for the higher capacity derivatives, A340-500 and 777-200LR for the longer range 

derivatives), the four-engined Airbus aircraft has better field performance but is heavier 

and its operating costs are impacted by high energy prices. Between the commercial 

launch in June 1997 and the first delivery in May 2002, the price of jet-fuel had already 

increased by 28% from US$0.52/gal to US$0.67/gal according to data from the US 

Energy Information Administration [34]. Between the commercial launch and the last 

delivery in November 2012, the price of jet-fuel had increased over 450% from 
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US$0.52/gal to US$2.96/gal as shown in Figure 7. With fuel cost making up about 40% 

of direct operating costs for long range aircraft, the difference in fuel-burn between the 

two aircraft became too large [35] for the Airbus quad to overcome. 

 

Figure 7: US Gulf Coast kerosene-type jet-fuel spot price 

 

Why did it happen? Investigating the jet-fuel price time series from 1994 till 

1997, the yearly volatility stands at 33% while the yearly return stands at 9.9%. In fact, 

with such a high volatility it is not surprising that the prices of oil could move 

substantially over the course of the five years of design. Let’s now use these properties to 

get more insight about possible jet-fuel price evolution scenarios.  

One popular stochastic process to model the evolution of volatile commodities, 

such as the price of jet-fuel, is the geometric Brownian motion [36]. In simple terms, a 

geometric Brownian motion is a stochastic process featuring a drift (representing the 

long-term trend) and some noise around this drift (modeling the volatility or variability 

around the long-term trend). APPENDIX A:  offers a quick introduction as well as a 
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description of some of the most useful properties of the geometric Brownian motion. In 

particular, I derive the closed-form formula to compute the probability that a geometric 

Brownian motion exceeds a given threshold within an allocated timeframe (first hit time 

probability for a barrier). Some other formula such as the expected time for the first hit of 

a barrier and the probability that a geometric Brownian motion is above a threshold at a 

given point in time are also presented. These derivations allow revisiting some aspects of 

the A340-500 and A340-600 business plan using data that was available at the 

commercial launch of these aircraft in June 1997.  

Indeed, Justin et al. [37] show that a geometric Brownian motion is a good model 

to represent the stochastic process followed by the price of jet-fuel between 1994 and 

1997. This enables the investigation of various jet-fuel price scenarios and an estimation 

of their likelihood. Using the information available to decision-makers in 1997, the 

following estimations are performed:  

• The probability that jet-fuel price ended up at least where it was at the aircraft 

entry into service or EIS (US$0.67/gal in 2002). One such case is notionally 

represented in exhibit (a) of Table 6. 

• The probability that jet-fuel price ended up at least where it was at the time of the 

last aircraft delivery (US$2.96/gal in 2012). One such case is notionally 

represented in exhibit (b) of Table 6. 

•  The probability that jet-fuel price hit at one point the price it actually reached at 

entry into service (US$0.67/gal) prior to entry into service (2002). One such case 

is notionally represented in exhibit (c) of Table 6. 
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• The probability that jet-fuel price hit at one point the price it actually reached at 

the time of last aircraft delivery (US$2.96/gal) prior to the time of last aircraft 

delivery (2012). One such case is notionally represented in exhibit (d) of Table 6. 

• The expected time for the jet-fuel price to first hit the price it actually reached at 

entry into service (US$0.67/gal). 

•  The expected time for the jet-fuel price to first hit the price it actually reached at 

the time of last aircraft delivery (US$2.96/gal).  

Table 6: Four different types of jet-fuel price scenarios investigated 
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Derivations enabling the computation of these probabilities and expected time to 

hit are explained in detail in APPENDIX A:  and the results are summarized in Table 7 

for convenience. Looking at these results, it is possible to conclude that the surge in the 

jet-fuel price experienced during the 1997 to 2012 timeframe was not unlikely to occur 

within the lifetimes of the A340-500/600 programs. These results also highlight one 

fundamental issue that arises with the use of expected values when dealing with a 

leptokurtic distribution1 with heavy asymmetric tails: even though the surge of the price 

of jet-fuel was not unlikely to happen and this scenario was not far-fetched by any means, 

the expected time for such a scenario to happen was projected to be much further into the 

future.  

Table 7: Some jet-fuel time-series results related to the A340-500/600 programs 

Probability of event Expected time to event 

Jet-fuel 

reaching 

US$0.67/gal 

at entry into 

service 

Jet-fuel 

reaching 

US$2.96/gal 

at last 

delivery 

Jet-fuel 

hitting 

US$0.67/gal 

before entry 

into service 

Jet-fuel 

hitting 

US$2.96/gal 

before last 

delivery 

Jet-fuel 

hitting 

US$0.67/gal 

Jet-fuel 

hitting 

US$2.96/gal 

48% 21% 72% 34% 5.8 years 40 years 

Besides these issues, Airbus main competitor launched two competing designs in 

2000, almost three years later, giving Boeing the opportunity to first gauge the market 

and then to benefit from the observation that oil prices were indeed surging and that 

significant emphasis ought to be given to the fuel-burn metrics during design. The main 

conclusion of this analysis is that the combination of two non-robust designs coupled 

                                                 

1 A distribution is leptokurtic if its kurtosis is larger than the kurtosis of a normal distribution which means 
that it features positive excess kurtosis (kurtosis minus three). Leptokurtic distributions are characterized by 
a more acute peak around the mean as well as fatter tails than a normal distribution. Fat tails indicate that 
extreme observations are more likely to occur and that the risks associated with these outlier events are 
increased.  
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with the later entry into service of competing designs accelerated the demise of the A340-

500 and A340-600.  

First Issue: 

In a competitive industry with long development cycles, there are few opportunities in the 

later part of the development process for manufacturers to change course as the 

uncertain environment unfolds. In this context, robust design simulation must be coupled 

with extensive competitive scenario investigations to ensure that the realization of 

uncertainty does not undermine a design that otherwise meets all customer requirements. 

 

2.2 Second motivating example 

Towards the very end of 2000, Airbus commercially launched the Airbus A380 

aiming to break the monopoly Boeing had for decades on the very large aircraft market 

segment with its Boeing 747. At the turn of the century, Airbus was embracing the hub 

and spoke philosophy which stipulates that airlines operate most of their flights out of a 

couple of mega hubs and funnel air traffic between major hubs with large-size aircraft 

[38]. Air traffic congestion and more generally insufficient airport infrastructure would 

force airlines to consolidate some of their capacity with larger aircraft and would 

therefore drive the demand for very large aircraft. In this context, Airbus was extremely 

bullish with the A380 development and estimated in its 2002 Global Market Forecast 

[39] that over 1,100 new very large aircraft would be delivered over the 2001 to 2020 

time period. It is worth mentioning that at the same time, Boeing made the opposite bet 

and projected that congestion would be alleviated by a fragmentation of the market [38]. 

Instead of funneling passengers through congested airports, the launch of more efficient 
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long range and smaller capacity aircraft such as the 787 Dreamliner would enable 

sustainable non-stop point to point routes bypassing traditional hubs. Few aircraft 

development programs have been as much scrutinized as the Airbus A380 program due to 

the size of the program and the media exposure given to this Airbus flagship aircraft. 

Data retrieved from the public domain and published around the commercial launch of 

the A380 program is used to perform a rough business case calculation using traditional 

economic valuation methodologies and the results are presented in the following 

paragraphs. 

The assumptions and inputs for the business case analysis are summarized in 

Figure 8 and Table 10. The program development costs were initially projected to be 

US$10.7 billion [40] in addition to the US$700 million spent before the actual aircraft 

commercial launch. The aircraft catalogue price was set at US$250 million and Airbus 

was hoping to get 50% of the overall market consisting of 1,100 new passenger airframes 

and 300 new cargo airframes with deliveries reaching 45 per year starting in 2009 [41]. 

Like in the previous example, the weighted average cost of capital (WACC) of Airbus is 

estimated to be 12.5% as per documents from EADS [30]. The aircraft are estimated to 

be sold at a typical 50% discount from list price with a down-payment of 10% when 

manufacturing starts one year prior to delivery, and with the remaining 90% due at 

delivery. The manufacturing costs are estimated to be close to 50% of the final price 

which is consistent with Noel Forgeard’s initial estimate of a program break-even at 250 

aircraft sold [42]. Using this set of inputs, rough estimates of the project value and project 

internal rate of return are provided in Table 9 with values for the unknown production 

cost varying from 40% to 70% of the final sale price of the aircraft. 
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R&D Costs 
 (Billion US$) 

10.7 

A380 List Price 
(Million US$) 

250 

Cost Escalation 
(Yearly) 

2% 

Cust. Discount 
 (Price) 

50% 

Risk Free Rate 
(Yearly) 

6% 

EADS WACC 
(2003) 

12.5% 
 

Gross Profit 

(% of price) 
30% 40% 50% 60% 

Project NPV 

Estimate 

(Million US$) 

-4,119 -1,627 866 3,359 

Project IRR 

Estimate (%) 
9% 12% 15% 17% 

Program 

breakeven 

(Aircraft) 

/ 1,255 580 399 

 

Figure 8: Initial A380 yearly 

production forecasts 

Table 8: Assumptions 

for the A380 business 

case estimations 

Table 9: A380 project value and internal 

rate of return estimations for different 

production costs 

Like in the previous example, these results are not meant to replicate a full-blown 

business case analysis performed by financial analysts within the company. Indeed, most 

of the information required to run a proper business case analysis is proprietary to the 

company and cannot be found in the literature. Besides, there are many aspects that are 

not taken into account in this simplistic analysis such as the expected revenues from 

selling spare parts, the future follow-up orders that may occur to replace early deliveries 

with improved and further optimized versions of the aircraft, and the expected costs of 

providing customers with performance guarantees regarding the design.  

Still, this analysis should provide some indication regarding the profitability likelihood of 

the program. Table 9 reveals that under the assumptions made, the program does not look 

very profitable. In fact, the results show that the program is profitable only if the gross 

profit margin reaches 47%. In other terms, the program remains profitable only if the 

production cost of a new A380 remains below 53% of its sale price. This looks like a 
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risky proposition. Besides, even with a gross profit margin of 60%, the internal rate of 

return does not exceed 17%. With a weighted average cost of capital at 12.5%, it seems 

unlikely that the management would accept a hurdle rate of only 17% for such a risky 

flagship program.  

These results are flabbergasting. The A380 received so much media exposure at 

launch-time that it seems almost paradoxical that the business case could be so weak. In 

fact, the author posits that most of the large-scale aircraft and engine development 

programs valued using traditional neoclassical valuation methodologies would yield 

similar shaky business cases. Yet, new aircraft and engine developments are announced 

every year and both Airbus and Boeing are profitable [43]. 

What is happening? Part of the issue may be related to the use of discounted cash 

flow analysis to perform economic valuations. As will be discussed in Chapter 3, section 

3.1.2, the discounted cash flow analysis is a sound method to value cash flows, but may 

not be the most adapted valuation method to perform economic valuation when 

uncertainty abounds. Indeed, this type of analysis is perfect for valuation with little or no 

uncertainty as most investments are treated as a “now or never” decision, and once 

committed, the investments cannot be revised or rescinded. This static approach to capital 

budgeting is to put in contrast with the very dynamic nature of capital budgeting required 

in a highly volatile and uncertain environment. As Justin et al. [44] mention, the static 

approach fails to recognize the flexibility offered to management when uncertainty 

unfolds and the value added by management when steering development programs into 

profitable directions. This results in a systematic undervaluation of long-term 
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development programs as the discount factor used to perform the valuation may not 

reflect the risk-mitigating impact that (successful) managers have.  

During the development of the Airbus A380, managerial flexibility has been used 

at least once to significantly alter the development program and improve its profitability. 

It happened in early 2007 when Airbus decided to stop and delay the development of the 

A380F freighter version [45] following limited sales and production issues that required 

diverting engineering capabilities to work on the passenger version of the aircraft. In this 

case, the research and development effort had been committed at the program 

commercial launch, yet only a fraction had been spent to prioritize the more promising 

passenger version. As a sideline benefit, the sunk costs of the A380F were not completely 

lost as the development work for the freighter version had been reused to develop 

increased gross weight of the passenger version. 

Second Issue: 

In a volatile industry sensitive to business cycles, uncertain energy prices and evolving 

customer requirements, managerial flexibility defined as the ability of management to 

actively steer research and development programs into profitable direction is valuable 

and must be accounted for when business plans are laid-out. Traditional capital 

budgeting methods do not usually account for this flexibility and consequently 

undervalue significantly long-term aircraft and engine developments.  

2.3 Third motivating example 

Airbus launched in late 2004 the A350 as a new design based on the fuselage of 

the highly successful Airbus A330. The new Airbus would be a new long-range wide-

body twin-engine aircraft featuring a new wing with new materials as well as new 
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engines and updated systems. The main objective for Airbus was to rejuvenate the 

product line to better compete with the Boeing 787 Dreamliner launched almost two 

years before and which was getting significant traction on the market. Marketed as a 

highly efficient and environmentally-friendly aircraft, the competitor from Boeing was 

indeed threatening the lucrative position of the A330 and risked making the Airbus 

aircraft obsolete.  

However, giving birth to its new aircraft was not an easy exercise for Airbus. In 

fact, the history of the A350 starts in early 2004 when Airbus first presented an updated 

A330 with better aerodynamics and engines dubbed A330 Lite as a response to the 

Dreamliner [46]. Later that year, Airbus decided to change strategy, significantly revamp 

the program by updating the wing and empennage, and call it A350 [47]. Following 

lukewarm reception by the airlines who wanted a clean-sheet design, Airbus announced a 

year later at the 2006 Farnborough air show that it was redesigning again the aircraft with 

a wider fuselage and that it was now calling it the A350XWB [48]. 

What happened? It is well accepted that Airbus was taken off-guard with this 

latest offering from Boeing and initially scrambled to provide a definite strategic answer 

to the new threat [49]. After all, even John Leahy of Airbus [49] jokingly mentioned 

these successive redesign attempts “Everyone was writing that we redesigned the aircraft 

six or seven times. We didn't. We redesigned it three times, and that was enough.” 

However, besides the initial surprise and the fact that it took Airbus several design 

iterations to fully address the needs of airlines and settle with the A350XWB, significant 

design changes were far from over: the A350XWB design from July 2006 is indeed quite 

different from the one that first flew in June 2013. Following criticism from potential 
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customers, the design of the A350XWB fuselage was updated in 2007 to reflect the latest 

advancements in carbon fuselage design and switch from a hybrid metallic fuselage 

frame and carbon panels to an all composite fuselage frames and carbon panels [50]. 

Some analysts, such as Gary Chapman [51] from Emirates Group Services and Data, 

believe that Airbus was probably not technologically ready to build an all-carbon fuselage 

in 2006 and that “Airbus has probably [caught-up and] learned a lot from what Boeing 

has done with the 787.” As Airbus was fine-tuning its manufacturing capabilities at the 

same time the aircraft design was progressing, the design space opened up incrementally 

leading to many subsequent revisions to yield a more competitive aircraft to customers. 

This example illustrates a fundamental problem facing many companies at the 

forefront of technological innovation: the timing adequacy between when technologies 

become available and mature enough to be used for a commercial application and when 

the company has the ability to develop and add a new element in its product line. In this 

last sentence, the term “ability” is to remain generic and may have different meaning 

depending on the situation: for the aerospace industry, it could be engineering manpower 

(constrained by limited skilled workforce), market acceptance (constrained by market 

demand), or financial resources (constrained by limited capital expenditures).   

Third Issue: 

In an industry where manufacturers can neither afford to have a gap in their development 

pipeline (to retain skilled workforce) nor develop two clean-sheet designs concurrently 

(due to limited engineering capabilities), the time at which technologies become mature 

for commercial application becomes crucial. These timings issues need to be anticipated 

with both the company and the competition product development pipelines in mind.  
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2.4 Research motivation and thesis organization 

The first chapter presented a list of challenges affecting the aircraft and engine 

manufacturing business. These challenges are very diverse and affect many different 

aspects of the business. Some of these are directly related to the design activity itself and 

include the management of technical and technological risks as well as the management 

of long-term development programs with evolving customer and regulatory requirements. 

Some are related more closely to the production and manufacturing, and include the 

supply chain management and the ability to meet production ramp-up targets. Finally, 

some challenges are related more closely to the economics of these developments and the 

ability to establish a proper business case in an uncertain and competitive environment. 

The second chapter presented three real-life aircraft development programs in 

order to illustrate how some of the aforementioned challenges may have impacted or 

hindered decision-makers during some phases of the design. In particular, three major 

problems were identified: the first is the drastic impact uncertainty can have on non-

robust aircraft designs in competitive environments; the second is the establishment of 

business cases with methods and techniques that may not adequately capture uncertainty 

and its impact on development program management; the third is the need for techniques 

and methodologies that enable detection of precursors to ensure optimal synchronization 

between (enabling) technology portfolio maturation and product development schedules. 

These observations lead to the overarching motivation for this research which is stated as 

follows:  

How can current state-of-the-art design methodologies be updated and improved so that 

they help: 
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• Identify precursors of technical, technological, and market opportunities leading 

to successful aircraft and engine developments 

• Account for the widespread uncertainty surrounding aircraft and engine 

developments in competitive environments 

• Establish a business case which reflects the entire spectrum of means available 

to management to steer development programs into profitable directions 

The main motivation for this research is formulated in a more compact setting below. 

With a more thorough and profound understanding of the implications of this problem 

statement, this motivation will be declined into several subsequent research questions.  

 

Overarching Research Question  – Improvement of value-based design methods 

Within the context of aerospace research and development optimization, how can value-

based design methods be improved to identify precursors of technological and market 

opportunities while reflecting the specific challenges associated with long-term and 

uncertainty-plagued developments, and while accounting for the competitive nature of 

the business? 

 

In the third chapter, a literature review is performed to review and identify the 

most appropriate methods for the present research. These methods are sorted into four 

different categories: methods for the construction of a business case; methods for the 

valuation of development programs with uncertainties and managerial flexibility; 

methods for the identification of precursors and trigger events; and finally methods to 

perform competitive assessments. 
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In the fourth chapter, an in-depth review of the real options literature is performed 

to analyze why current real options methodologies fail to be widely used despite their 

many theoretical advantages. The weaknesses and limitations of current methods are 

highlighted while investigations take place to relax some of the most constrictive 

hypotheses. This leads to a series of hypotheses regarding potential improvements to 

current real options methods. 

In the fifth chapter, the original problem statement is revisited and issues 

identified in previous chapters are synthesized. The various research questions and 

hypotheses formulated in the previous chapters are revisited and a mapping between 

research questions and hypotheses is performed to facilitate the layout of verification and 

validation processes. Three types of hypotheses are formulated: Method hypotheses 

which concern a set of ordered procedures to investigate and resolve real-life problems 

faced by practitioners in the industry, Modeling hypotheses which address generic 

mathematical representations of some aspects of real-life, and Technical hypotheses 

which deal with specific mathematical techniques to solve specific mathematical 

problems 

In the sixth chapter, a novel methodology is constructed via cross-fertilization of 

techniques and methods used in the actuarial sciences, statistics and quantitative finance 

industry to improve the current state-of-the-art in evaluation methodologies. It builds 

upon traditional methods but makes use of advanced evaluation techniques presented in 

the previous chapters which aims at assessing staggered investments featuring flexibility.  

In the seventh chapter, an experimental plan is proposed to determine a set of 

experiments necessary to prove or disprove each of the technical hypotheses. In this case, 
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a pure mathematical verification is usually sufficient to ensure they properly address and 

solve the identified mathematical problems. The experimental plan is carried out using a 

series of canonical examples starting with a traditional stochastic process and then 

moving to a complex process featuring jumps. 

In the eighth chapter, a proof-of-concept is introduced to demonstrate the 

applicability of the proposed methodology in a typical aerospace industry setting. This 

proof-of-concept concerns a Performance Improvement Package (PIP) which is being 

offered to aircraft operators as a retrofitting option to improve the operating economics of 

a currently out of production aircraft. The uncertainties affecting the value of the PIP 

development program are identified and calibrated using market data. The section 

concludes with the development of a market model to estimate the adoption of the PIP by 

engine operators worldwide.  

In the ninth chapter, the aforementioned case study is used to validate the method 

and modeling hypotheses formulated in previous chapters. The method and modeling 

hypotheses propose a mathematical abstraction to represent some tangible aspects of the 

real-life and the validation ensures that the mathematical abstraction is adequate, is 

suitable for the envisioned application, and finally, represents all pertinent aspects of the 

problem. 

Finally, in the tenth chapter, general conclusions are drawn and the main 

contributions of this research are summarized. Several improvements to the proposed 

methodology are also suggested for future research. 
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CHAPTER 3: PROBLEM DEFINITION 

 

3.1 Valuation methods 

Valuation methods are sets of procedures and techniques used in order to assess 

the economic value of a business or a prospect. The purpose of a valuation technique can 

be summarized by the deceptively simple question: “how much is the business or 

prospect worth?” It is an essential step in any capital budgeting decision as it provides the 

rational for selecting business ventures that add value to a firm. Over the years, many 

techniques have been proposed with higher and higher levels of sophistication. This 

increase in complexity results from the observation that more and more hidden value 

needs to be accounted for in the evaluation of prospects (value of flexibility) and the 

realization that a venture being merely profitable is not sufficient to warrant a significant 

investment (investment efficiency and capital constraints). This section reviews several 

ubiquitous as well as cutting edge valuation methods. 

3.1.1 Payback period 

A time-honored capital valuation method that was once prevalent, the payback 

period is the selection criteria that most business firms used in order to select capital 

investments [52]. Its main idea is that the sooner the break-even point of a venture, the 

better. For a capital investment project, the payback period is the time, usually expressed 

in years, needed to payback the initial investment from the future expected cash flows. It 
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is therefore based on assumptions regarding the future cash outflows and cash inflows.   

Mathematically, this may be computed with the formula shown in Eq. 1. 

� = &'(�()* &',-.�/-'��01-2�-3 4''5)* 6-� 7).ℎ 8*9�. Eq. 1 

 All else being equal, an investor comparing different capital projects would prefer 

the one with the shortest payback period. Byrne et al. [53] argue that investments with 

short payback periods are relatively liquid investments that minimize the lost opportunity 

risks. Payback period as a valuation method is still used, especially in smaller firms, due 

to its simplicity. It has nonetheless serious limitations in that it does not account for the 

time-value of money, the risks associated with the capital investment, and the opportunity 

costs. Last but not least, the main shortcoming of the payback period is its failure to 

provide any information about the expected profitability of the investment. 

3.1.2 Discounted cash flow analysis and the net present value 

Recognizing the limitation of the payback period method, Irving Fisher [54] and 

John Bur Williams [55] formalized the discounted cash flow analysis using the concept 

of time-value of money. The adoption of the discounted cash flow analysis has been 

flabbergasting and it is believed to be the most widespread method to assess the 

economic performance of large investments made by corporations. In 1972, Klamer [56] 

reported that 19% of firms in a survey were using discounted cash flow techniques. This 

number increased to 75% in 2001, as reported by Graham and Harvey [57].  

A discounted cash flow analysis starts with a forecast regarding both the 

investment outlays (the cash outflows) and the revenue prospects (the cash inflows) 

stemming from the investment. These forecasts may be assessed using historical analysis 
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(the past is a good starting point to predict the future), statistical analysis (comparable 

investments provide information regarding the outlays and revenue characteristics), 

educated guesses from subject matter experts, or simply best-guess estimates from 

managers. To account for the time-value of money, the cash inflows and cash outflows 

are each discounted according to their respective risks. Finally, the sum of all these 

discounted cash flows is called the net present value. An investment featuring a negative 

net present value is not economically viable whereas an investment with a positive net 

present value is viable. When funding constrains the number of investments to be 

undertaken, an investor comparing different capital projects would, all else being equal, 

select the investment having the highest net present value. As a side note, the discounting 

may be done according to two different conventions [58]: if the model is set up in 

continuous-time, the continuous compounding discount rate is used, while if the model is 

discrete, then a periodic discount rate is used. These two ways of discounting are shown 

in Eq. 2, to the left for continuous compounding, and to the right for discrete 

compounding. 

6:� = ; 78� ∙ -=��>?
�@A  6:� = ; 78�B1 + �E�?

�@A  
Eq. 2 

Where CFi is the cash flow at time �� and r is the discount rate. 

Theoretical underpinning of the discounted cash flow analysis 

The theoretical underpinning of the discounted cash flow analysis may be 

explained using consumption choice arguments. To simplify the argumentation, let’s 

follow Ross et al. [59] and assume a two-period economy where investors may borrow or 

lend at an equilibrium interest rate r. The investor has an initial wealth today of X and the 
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consumption choices offered to him may be represented by the graph shown in the 

exhibit (a) of Figure 9. 

In this graph, the investor is currently in position A which represents his ability to 

consume in Period 1 all of his income in Period 1 and his ability to consume in Period 2 

all of his income in Period 2. This is however not the only option available to an investor 

having access to the capital market. One extreme option for the investor is to consume all 

of the income of the first period and borrow money against the income from the second 

period which is represented by point B with a first period consumption of X+Y/(1+r). 

Another extreme option is to not consume anything during the first period and instead 

lend at the interest rate r in which case the wealth available for consumption during the 

second period is represented by point C and is equal to Y+(1+r)X. Finally, any point in-

between situations B and C is possible: moving from A to B indicates that the investor 

consumes more today and borrows, while moving from A to C indicates that the investor 

defers consumption and therefore lends. The line from B to C is straight because no 

individual has any effect on the market-driven interest rate. Each point along this line 

represents a specific consumption choice given the wealth for the two periods. It is called 

the intertemporal budget line. 
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Figure 9: Consumption choice in a two-period model 

Let’s now introduce another point, A’, as shown in exhibit (b) of Figure 9. This 

new point represents a new investment opportunity available to the investor. What is 

interesting about this new point is that it is placed above the original intertemporal budget 

line. Does undertaking this investment increase the wealth of the investor? To answer, 

let’s look at how the investor could replicate this new opportunity. Replicating the 

investment means hopping from the original intertemporal budget line to the new one 

where A’ lies.  Moving from A to D’ is one way of achieving this goal and since the 

investor is moving towards the right of the graph, it means that the consumption in the 

first period is increased without any change to the consumption in the second period. 

Similarly, moving upwards from A to E’ means that the consumption in the second period 

is increased without changing the consumption in the first period. In both cases, higher 

overall consumption is achieved, which indicates that replicating this investment 

opportunity increases the wealth of the investor.  The distance between A and D’ or 

between A and E’ is what characterizes the wealth created by the investment and is called 

the net present value (NPV) of the investment. 

One take-out from this simple two-period example is that the net present value is 

a simple criterion to decide whether to undertake an investment: as long as the investment 
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exhibits a positive net present value, then it can be replicated by giving cash to the 

investor which is equivalent to creating wealth and therefore should be undertaken. On 

the contrary, an investment exhibiting a negative net present value can be replicated by 

giving up cash which destroys wealth and should therefore not be undertaken. 

Another take-out from this example is that no investor preference has been used 

to assess whether the investment should be undertaken. This means that the investment 

decision is made only by estimating the net present value regardless of the individual 

preference for consumption now or in the future. This is the basis of Fisher’s separation 

theorem which states that the objective of a corporation is the maximization of its present 

value and all of the owners (shareholders and debt holders) will agree on which 

investment to undertake regardless of their individual tastes for consumption and savings. 

Theorem: Fisher Separation Theorem 

Each person, after or while first choosing the option of greatest present worth, 

will then modify it by exchange so as to convert it into that particular form most 

wanted by him. This implies, as we have seen, that each person's degree of 

impatience, or rate of time preference, will at the margin, be brought to equality 

with the market rate of interest and, therefore, with the marginal preference rates 

of all the other persons. 

Selecting a discount rate 

In the previous section, the analysis is performed using a market interest rate for 

lending and borrowing purposes. The nature of the interest rate is, however, not explained 

and the term remains pretty vague; it could indeed be a risk-free rate or a risk-adjusted 
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discount rate. In fact, the discount rate needs to reflect the cost of borrowing money or 

better said the ease of access to capital. 

For private companies, raising capital is usually done in two ways: either by 

issuing bonds or by issuing stock. Issuing bonds is equivalent to raising money by getting 

debt whereas issuing stock is equivalent to raising money by diluting ownership of the 

company. Both bondholders that have a creditor stake in the company and stockholders 

that have an equity stake of the company needs to be compensated through either coupon 

and principal payments or dividend payments which are funded using the cash flows 

generated by the company. Consequently, investments made by the company must have a 

return that is sufficient to pay for both the cost of debt and the cost of equity. 

The Weighted Average Cost of Capital (WACC) is the rate that a company is 

expected to pay on average to all its bondholders and stockholders to finance its assets. It 

is therefore the minimum return that a company must seek on its asset to satisfy its 

creditors and owners. In the model with two sources of capital, the WACC may be 

estimated as shown in Eq. 3. In this formulation, the cost of debt and the cost of equity 

are weighted1 according to the total debt and total equity of the company. Total debt and 

total equity can be estimated quite simply by looking at the outstanding debt and the 

number of outstanding shares and their market price. The cost of debt and the cost of 

equity are, however, more complex to estimate. 

 

 

                                                 

1 The cost of debt is adjusted using the corporate tax rate since debt interest is tax deductible. 
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�477 = FF + � GHB1 − �JE + �F + � GK 

F: �9�)* 3-M�, �: �9�)* -O5(�P, GH: 29.� 9� 3-M�,GK: 29.� 9� -O5(�P,       �Q: 29�19�)�- �)0 �)�- 

Eq. 3 

 

For the cost of debt, a historical approach or a market approach may be used. In 

the historical approach, financial statements of the company are used to estimate an 

average interest rate by weighting the interest of each individual loan according to its 

principal. A more accurate approach reflects current information from the marketplace 

(as opposed to past information) and uses the yield-to-maturity1 of the outstanding debt. 

This requires that up-to-date market prices of the company’s outstanding bonds exist 

which is not often the case. Finally, a practical approach that still incorporates market 

information consists in first looking up the company’s debt rating (Moody’s, S&P, Fitch) 

and then looking up the market yields of bonds with similar maturity and rating. 

The cost of equity reflects the rate of return that a well-diversified shareholder 

would require given the exposure of the company to non-diversifiable risks. One way to 

estimate the cost of equity is to use the Capital Asset Pricing Model (CAPM) formalized 

by Treynor [60], Sharpe [61], Lintner [62] and Mossin [63] following the earlier work of 

Markowitz [64] on diversification and the modern portfolio theory. There are several 

assumptions used in the capital asset pricing model and the intent here is just to give the 

reader the essence of the model. For a more complete derivation, the user is referred to 

APPENDIX E:  as well as [65] for some information about modern portfolio theory and 

                                                 

1 Yield to Maturity (YTM) of a bond is the internal rate of return of a bond held until maturity and for 
which all coupon and principal payment are paid on schedule 
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the efficient portfolio frontier, and to APPENDIX F:  as well as [65] for some more 

information about the derivation of the CAPM and about why the market portfolio is an 

optimal portfolio. 

The capital asset pricing model uses the concept of market portfolio which is a 

basket of investments containing every asset available in the financial market, with each 

asset weighted according to its total presence in the market. Since the market portfolio is 

completely diversified, it is subject only to systematic risk. In this setting, the risk 

premium of any asset over the risk-free rate of return is directly related to both its 

contribution to the market portfolio rate of return (expressed in E(re)-rf) and its 

contribution to the market portfolio risk (expressed as a covariance 29,B�K , ��E) . The 

capital asset pricing model yields the mathematical expression in Eq. 4 for the theoretical 

rate of return of an asset. 

�B�KE = �� + 29,B�K , ��E"�R S�B�KE − ��T 
With �Kthe return of an asset,  ��the risk-free rate of return, �� the return of the 

market portfolio, and "� the volatility of the market portfolio. 

Eq. 4 

 

Using the expressions for the cost of debt and the cost of equity, it is now possible 

to compute the weighted average cost of capital to be used for discounting purposes as 

shown in Eq. 5. 

�477 = FF + � GHB1 − �JE + �F + � U�� + 29,B�K, ��E"�R S�B�KE − ��TV Eq. 5 
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Shortcomings of the discounted cash flow approach 

The discounted cash flow approach is the current “standard” for evaluating 

business prospects and assessing their profitability. Its widespread acceptance may be 

traced to several reasons including a rigorous foundation and an early and widespread 

exposure to future practitioners in colleges and business schools. Besides, the method is 

both transparent and straightforward requiring only a single “black box” parameter, the 

discount factor, which may be hard to come-by on an ad-hoc basis but which is often 

supplied company-wide by the upper management. 

However, the method is not devoid of shortcomings. One of the recurrent pitfalls 

is related to the use of the same discount factor to discount both the expenditures and the 

revenues. In many business ventures, the costs may have much less uncertainty (risk) 

than the revenues. Consequently, some expert argues that the cash outflows and the cash 

inflows should not be discounted using the same discount rate.  

Another issue pertaining to the discounted cash flow analysis is related to the 

evaluation of long-term business ventures. In these cases, one (a most likely) or several 

(bad, good, and most likely) scenarios are identified and investments as well as revenue 

streams are generated for each case. However, this type of approach does not recognize 

the fact that long-term investments often present many opportunities for the management 

to react to the realization of uncertainty and to alter the course of the project. In turn, this 

managerial flexibility brings additional value to the firm. The value of flexibility is not 

accounted for in the rather “static” discounted cash flow analysis which assumes a 

passive management once capital investments are committed.  
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3.1.3 Internal rate of return 

Whereas the discounted cash flow analysis attempts to estimate the value of an 

investment, the internal rate of return attempts to quantify the yield or quality of an 

investment. Both approaches are in fact very similar and mostly differ in what is 

considered to be an input and what is considered an output of the analysis. While the 

discounted cash flow analysis starts with estimates of cash flows that are then discounted 

to find the investment value, the internal rate of return analysis starts with estimates of 

the cash flows and then estimates the discount rate that yields a net present value of zero. 

In other words, the internal rate of return is the rate of return that makes the net present 

value of the investment equal to zero. This discount rate is compared next to the cost of 

capital to investigate whether the investment is worth pursuing. 

In mathematical terms, if the cash flows resulting from the investments are 

estimated on an annual basis, the internal rate of return rirr may be computed as the 

solution of Eq. 6. Most of the time, there are no analytical solutions to this equation. Yet, 

if there are alternating positive and negative cash flows, then there may be several 

solutions to this equation. Different root-finding algorithms may be used to estimate the 

solution to this equation: if a single solution is suspected, a bisection approach could be 

appropriate, if faster convergence is sought, a secant method may be more appropriate. 

0 = ; 78�B1 + ����E�?
�@A  Eq. 6 

The secant method is a time-honored root-finding algorithm that performs 

successive linear approximations to the function to be solved. Depending on the function 

and on the initial guess for the internal rate of return, convergence is not guaranteed. 
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However, an initial guess sufficiently close to the solution is usually sufficient. The 

successive iterations for the estimate of the internal rate of return are given in equation 

Eq. 7. 

����?XY = ����? − 6:�? Z ����? − ����?=Y6:�? − 6:�?=Y[ Eq. 7 

  Despite the apparent hurdle of solving for the internal rate of return iteratively, the 

method has been embraced by practitioners and is one of the most popular methods to 

assess the economic viability of investments. Practitioners find it easier to use than the 

discounted cash flow analysis when comparing investments of different sizes because it 

yields a single figure of merit that is non-dimensional. In addition, it measures investment 

efficiency and may therefore give better insights in capital constrained situations.  

Shortcomings of the internal rate of return 

To illustrate some of the shortcomings of the internal rate of return methodology, 

let’s introduce a notional example. Let’s assume that a major aerospace company may 

elect to pursue one of two different investment opportunities: one is to invest in a low 

cost derivative aircraft, the other is to invest in a higher cost brand new aircraft as shown 

in Table 10. 

Table 10: Aircraft development notional example 

 Low Cost Derivative 
Widebody Aircraft 

High Cost New 
Widebody Aircraft 

Initial investment 4.0 Billion 8.0 Billion 
Yearly net cash flow 1 Billion 1.9 Billion 

Production run 10 Years 16 Years 
Development time 3 Years 5 Years 

Risk-free discount rate 5% 5% 
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Using this simple example, let’s plot the graph showing the net present value of 

these two aircraft development projects for different discount rates. First, what is striking 

in Figure 10 is that the two curves representing the two projects cross each other. This 

means that depending on the discount factor chosen, the supposedly better project 

changes from the derivative to the new aircraft. Looking at which project yields the 

highest internal rate of return, it appears that the derivative is the most capital efficient 

one as highlighted in Table 11. However, looking at the net present value using a 

discount factor equal to the weighted average cost of capital, it seems that the new 

aircraft is creating more value to the firm. Given the contradictory nature of these two 

results, how to substantiate decision making? 

 

 

Low Cost 

Derivative 

Widebody 

Aircraft 

High Cost 

New 

Widebody 

Aircraft 

NPV (Billion US$) 

(WACC=12.5%) 
0.25 0.37 

Project IRR 

(%) 
16.7 15.8 

 

Figure 10: Development program value for 

different discount rates 

Table 11: Conflicting NPV and IRR values for 

the new and derivative projects 

 

Let’s first investigate why the two results differ. The first reason is that the 

internal rate of return approach estimates the yield or capital efficiency of an investment 

and not the value created and added to the company by the investment. Therefore, 

investments with large initial expenditures may be erroneously turned down for shorter-

term investments with smaller initial expenditure. Another reason is that the internal rate 

of return approach assumes that the interim cash flows are reinvested in assets having the 

Discount Rate

Program Net Present Value ($B)

- - Low cost derivative aircraft
– High cost new aircraft
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same internal rate of return as the investment under review. This poses a problem 

particularly relevant for investments with large internal rate of returns as there may not be 

any alternative investment available offering a similar rate of return. In this case, the 

computation may overestimate the real internal rate of return of the investment. 

There are several reasons to this conundrum but all of the explanations point to 

one direction: the internal rate of return is a good metric to assess the efficiency of an 

investment but should not be used to compare mutually exclusive projects. This precludes 

the use of the internal rate of return for the research problem investigated. 

3.1.4 Modified internal rate of return 

As its name implies, the modified internal rate of return (�\���) is a modification 

of the internal rate of return in order to avoid the over-estimation induced by the 

assumption that intermediate cash flows are reinvested at the same rate of return as the 

investment itself. 

In order to achieve this goal, the modified rate of return uses both the present 

value of negative cash flows and the future value of positive cash flows as seen in Eq. 8. 

The negative cash flows are discounted to the present time at the cost of capital (�]^JJ). 

The positive cash flows are compounded to the final time (last period of interest) at a 

proper re-investment rate (��?_) typical of the business. Another improvement over the 

classic internal rate of return is that the modified internal rate of return formula yields a 

single solution. There is therefore no guessing required to establish which solution is 

appropriate when several are plausible.  
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�\��� = `∑ b/)0B0, 78�E ∙ B1 + ��?_E?=�c?�@A  ∑ d/('B0, 78�E B1 + �]^JJE�e f?�@A
g  

Eq. 8 

Despite these improvements, the modified internal rate of return suffers from the 

same issue as the internal rate of return for the selection of mutually exclusive projects. 

Indeed, it estimates a metric of investment efficiency and not the aggregate added value 

of an investment. 

3.1.5 Real options analysis 

Another evolution of the discounted cash flow analysis that uses both cash flows 

over the entire life of the investment and a market-derived opportunity cost of capital is 

the real options analysis. Real options analysis is an emerging field in corporate finance 

where it is used to substantiate capital budgeting decisions when uncertainty abounds. Its 

emergence at the turn of the 21st century stems mainly from two facts: (1) the realization 

that a pure discounted cash flow approach does not reflect the flexibility offered to 

decision-makers and (2) the recent adaptation of option valuation techniques originally 

developed for financial trading to capital budgeting analysis.  

Real options analysis goes beyond discounted cash flow analysis because it 

recognizes that managers do not stand still while uncertainty is unfolding, but rather 

actively steer projects into profitable directions. Decision-makers react to changes in the 

business environment, abandon projects that are not economically viable, and add 

resources to those that are promising given the latest realization of uncertainty.  

Since the analysis accounts for the abandonment of unprofitable ventures, their 

values may be understood to be similar to the values of financial call options that are 
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exercised only if the values of the underlying assets are larger than the exercise prices. 

Like a financial option, a real option is the right but not the obligation to undertake a 

business decision. As such, the value of a research and development project may be 

viewed as the value of the option to fund research and the value of the option to fund the 

development program. In this sense, real options analysis is an extension of the seminal 

work pioneered by Black, Scholes, and Merton [66] [67] regarding financial options. In 

the case of real options, however, the underlying assets are not stocks, futures or forward 

contracts but usually real assets such as research and development programs. Typical 

examples of real options used in early works were the options to expand, shrink, or 

abandon investments in the mining industry.  

What is an option? 

Before getting into the technicalities of the options analysis, it is necessary to 

introduce the jargon and establish the parallelism between financial options analysis and 

real options analysis. Option contracts belong to a larger family of financial instruments 

called derivative securities or derivatives. As the name suggests, these are financial 

instruments whose prices are determined by the prices of other securities and are also 

called contingent claims because their payoffs are contingent on the prices of other 

securities. Because their values depend on the values of other securities, these 

instruments can be used for both hedging and speculation purposes. Options may be 

traded on exchange as well as in the over-the-counter market which means that they may 

come in many different flavors and forms. The simplest options, also known as vanilla 

options, are the European call options and the European put options. More complex 
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options are often referred to as exotic options. In its simplest form, a European call option 

is a contract with the following properties: 

• It has a prescribed time in the future known as the expiration date or maturity 

• It specifies a prescribed asset known as the underlying asset or underlying 

• It gives the holder of the contract the possibility to buy at maturity a prescribed 

amount of the underlying at a prescribed price known as the exercise price or 

strike price  

The fact that this contract gives the holder the possibility to purchase the 

underlying is important because this means that this contract provides a right and not an 

obligation. This provides flexibility to the holder to wait and see the evolution of the 

price of the underlying before committing to the purchase. Because this contract confers 

to its holder a right with no obligation, it has a value which must be paid at the time of 

opening the contract: this is the price of the option contract. When analysts mention 

option valuation techniques, they refer to those techniques that permit the pricing of these 

options. Similarly, a European Put Option is a contract with the following properties: 

• It has a prescribed time in the future known as the expiration date or maturity 

• It specifies a prescribed asset known as the underlying asset or underlying 

• It gives the holder of the contract the possibility to sell at maturity a prescribed 

amount of the underlying at a prescribed price known as the exercise price or 

strike price  

There are many other types of options and a review of these is not necessary at 

this point of the dissertation. An interested reader might find more information in Espen 

Gaarder Haug [68]. 
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Drawing a parallelism with the theory of financial options, a real option is the 

right but not the obligation to undertake a business decision sometime in the future. 

These business decisions may have many different shapes and goals. The ones of interest 

in this research are development programs and more generally investments in the 

aerospace industry. These investments usually present many opportunities over the 

course of their existence, such as the possibility to abandon a non-profitable investment 

(abandonment of the Boeing Sonic Cruiser), the opportunity to expand a profitable 

investment (increase the rate of production of the Boeing 787), the opportunity to develop 

derivatives (develop the Airbus A321 if the Airbus A320 is successful), or the possibility 

to defer a risky investment (delay the development of the Boeing 777-300ER). In these 

cases, the relationship between financial options and real options may be established by 

mapping financial parameters used in the financial option literature to parameters used 

for investment valuation and capital budgeting. A framework to establish this duality is 

presented in Table 12. 

Table 12: Mapping financial options jargon and real options jargon 

Parameter Financial options Real options 

Option Legal Contract Business Decision Regarding an 

Economic Endeavor  

S Stock Present Value of Program Cumulative 

Cash Flows 

K Strike Price Present Value of Delayed Capital 

Investment 

T Maturity Option Life 

r Risk-Free Rate Risk-Free Rate 

σσσσ    Standard Deviation of Return 

(Volatility) 

Standard Deviation of Returns of 

Project Value 
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Theoretical underpinning of the real options analysis 

The theoretical underpinning of real options analysis relies on option valuation 

techniques developed in the finance and trading industry and later applied to capital 

budgeting decisions. Therefore, a review of some of the work developed within the 

context of the finance industry is warranted to fully appreciate both the similarities and 

differences between financial options and real options. 

Using the previously defined nomenclature, the payoff at expiration T of a 

financial option on an underlying stock S with a strike price K and with a purchase 

premium of V may be represented by Figure 11 with exhibit (a) for a call option (option 

to buy stock) and exhibit (b) for a put option (option to sell stock). Exhibit (c) and (d) 

represent the final payoff without accounting for the option purchase premium which is 

more customary in the option literature. As shown in exhibit (c), when the price of the 

underlying stock exceeds the strike price at expiration, the payoff of a European call 

option is positive because the contract holder will exercise the option and sell the stock 

immediately after, making a profit of S-K. Similarly, exhibit (d) shows that when the 

price of the underlying is below the strike price of the European put option, the contract 

holder will immediately exercise the option (sell the stock) and buy it back at the 

prevailing market price, therefore making a profit of K-S. 
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Figure 11: Vanilla options payoffs at expiration (accounting for the option premium) 

 Having defined the payoff of the options at expiration is the first step for options 

valuation purposes. How can the analyst use this information to estimate the price of an 

option? This is in fact much more complicated than it seems. A naïve answer suggests 

using the expected distribution of the asset price at expiration to estimate an expected 

payoff and then discount this payoff to the present time to find the arbitrage-free price of 

the option. Even though this approach is theoretically correct, it falls short because there 

is no rigorous way to estimate the discount factor to be used1 for present value 

calculation. 

Fisher Black, Myron Scholes [66], and Robert Merton [67] circumvented this 

problem in 1972 by setting up a hedged portfolio made of the underlying stock and the 

                                                 

1 The option is not risk-free and therefore using the risk-free rate of return is not appropriate. The risk 
associated with the option is also different from the risk associated with holding the underlying, so a 
discount factor associated with the underlying would not work either. 
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option itself such that its return is exactly the risk-free rate of return. Knowing the value 

of the portfolio and using its riskless property ensures that its expected value can be 

discounted to the present time using the risk-free rate of return (alternatively, a 

replicating portfolio can also be constructed using both the underlying stock and the risk-

free asset such that it exactly replicates the payoff of the option). APPENDIX G:  actually 

provides a description of the Black-Scholes-Merton model as well as a derivation of the 

acclaimed Black-Scholes formula for pricing European call options for which Robert 

Merton and Myron Scholes earned the Nobel Memorial Prize in Economic Sciences 

(Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel). The beauty 

of the Black-Scholes-Merton setup is that it enables the derivation of a deceptively 

simple closed-form expression for the price of a European option. 

For real options, similar techniques are used to value staggered corporate 

investments subject to numerous uncertainties. In this case, an initial investment outlay is 

required to acquire the right to exercise another investment later down the road. Using the 

development of a commercial airliner presented previously, the initial investment is the 

cost associated with funding a market research or even the conceptual design phase of the 

development. With this investment done and if the market environment favors a further 

development of the aircraft, this initial expenditure provides the company the possibility 

to fund the next stages of the development, namely the preliminary and detailed design 

phases. In this case, the initial investment is the value of the option to further develop the 

aircraft, the investment required to fund the preliminary and detailed design phases of 

development is the strike price, and the uncertain present value of the aircraft program 

cash flows is the uncertain underlying price. Similarly to financial options, these real 
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options come in many different flavors but always have something in common: there is 

flexibility at one point to alter the forecasted development, whether it be to scale-up the 

development, to delay the development, or to abandon the development as illustrated in 

Table 13. 

Table 13: Different types of real options 

Option Type Description Example 

Delay  

option 

Possibility to fund only the first phase of 

a development in order to wait for the 

realization of uncertainty before 

committing to further developments 

Funding market research 

before committing to the 

development of an aircraft 

Growth 

option 

Funding a development program 

enabling the option to be further 

extended 

Development of a family of 

aircraft including several 

derivatives 

Abandonment 

option 

Possibility to resell the assets if the 

uncertainty is realized in unfavorable 

directions 

Possibility to sell technology 

research patents  

Compound 

option 

Possibility to fund only the first phase of 

a development in order to wait for the 

realization of uncertainty before 

committing to a second phase and later to 

a third phase of development 

Multi-phase aircraft 

development program with 

decision toll-gates 

Shortcomings of current real options approaches 

Real options analysis has many advantages stemming from its ability to capture 

the value of flexibility offered to managers over the course of a development program. 

On the other hand, most of its shortcomings stem from the fact that practitioners have 

tried to transpose a methodology developed by and for the quantitative finance industry 

to capital budgeting problems.  

The first type of issues is related to the assumptions underlying the Black-

Scholes-Merton models. These assumptions state that the underlying stock follows a 

geometric Brownian motion with constant volatility and constant drift. The geometric 

Brownian motion is generally accepted as a “good enough” approximation for the return 
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of stocks traded in the financial markets but might not be adequate to model the value of 

research and development programs. There is therefore a need to depart from the 

traditional Black-Scholes model to be able to accommodate more diverse stochastic 

processes, and especially those that are more relevant for technologically-driven ventures. 

The second type of issues is more fundamental and is related to the nature of the 

underlying. In the case of real options, the research and development program is not a 

traded asset and therefore there is no consensus regarding its fair market value. Instead, 

the projected cash flows stemming from the program are the best-guess estimates of 

analysts and this might result in a skewed analysis. In addition, the market might be 

incomplete in that it might not be possible to fully replicate the evolution of the value of 

the underlying research and development program behavior in all possible states of the 

world. Therefore, the Black-Scholes-Merton model which is articulated around a hedged 

position using a replicating portfolio might not be adequate, and the valuation of real 

options may fall under the more generic umbrella of option valuation in incomplete 

markets. 

3.1.6 Valuation methods:  a summary 

Table 14 summarizes the main strengths and weaknesses of the methods 

previously described. From this table, it appears that none of the method is perfect to 

perform valuation of long-term and highly uncertain research and development programs. 

However, it stands out that real options techniques are more adapted for the valuation of 

research and development programs in the aerospace industry given their highly 

uncertain and long-term nature. In addition, real options valuation provides a good 

platform to build upon and improve the current valuation state-of-the-art. This 
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comparison of various valuation techniques allows stating one of the research hypotheses 

underlying this work: 

Hypothesis 1—Real options for valuation with flexibility and uncertainty 

In the context of aerospace research and development programs, real options 

methodologies enable the valuation of business cases and the development of value-

driven design frameworks accounting for the value created by managerial flexibility in an 

uncertain environment. 

Table 14: Strengths and Weaknesses of a Selection of Valuation Methods 
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uncertainty 
    

 

Valuation  

includes 
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3.2 Marketing and competitive analysis methods 

A competitive analysis is a marketing and strategic management analysis aimed at 

assessing the strength and weaknesses of both current and potential competitors. This 
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analysis is aimed at formulating a product development strategy that is robust with 

regards to uncertain moves by the competition and optimal for the economic viability of 

the project under review. In the context of aerospace engineering, a competitive analysis 

is a critical step during a product development cycle for several reasons. First, aircraft 

developments are long-term endeavors and it is likely that the competitive landscape will 

evolve in the meantime. Therefore, properly assessing beforehand the impacts of 

potential competitor moves is critical to the economic viability of the program. Next, 

aircraft developments are multi-billion dollar ventures which tie the funding abilities of 

manufacturers for a long time and preclude them from substantially altering the product 

development cycle once it reaches the detailed design phase. It is therefore paramount to 

ensure that the product meets the customer requirements and that there is enough space 

for multiple competitors within a market niche before actually committing to it. Finally, 

the competitive analysis provides decision-makers with preliminary information 

regarding the market reaction in various competitive scenarios. In turn, this enables the 

formulation of sales volume estimates helping the construction of scenario-based 

business plans and the estimation of profitability. 

3.2.1 SWOT analysis 

The SWOT analysis has disputed origins (often attributed to Albert Humphrey as 

part of his Team Action Model research) and stands for the evaluation of Strengths, 

Weaknesses, Opportunities and Threats involved in a business venture. It involves 

specifying the objectives of the business venture and listing internal and external factors 

that are both favorable and unfavorable to achieving these objectives. This listing is done 

to investigate the adequacy between the internal and external environments, to bring the 
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company in balance with the external environment, and to ensure it remains so over time. 

The first step is therefore the collection of relevant data to assess the capability of the 

company. This data is next sorted into the four categories mentioned previously with 

Strengths and Weaknesses generally stemming from the company itself, and 

Opportunities and Threats usually stemming from the outside. For each business venture 

under review, the information is presented in a SWOT matrix such as the one in Table 15 

to check the adequacy between the objectives and the strengths. Finally, the last step 

consists in incorporating this analysis in the strategic decision process to ensure that the 

corporate strategy is in balance with these four attributes.   

Table 15: SWOT Matrix 

 Beneficial for 

Company Objective 

Detrimental to 

Company Objective 

Internal 

Origins 
Strength Weaknesses 

External  

Origins 
Opportunities Threats 

Strength and shortcomings of the SWOT analysis 

The SWOT analysis is a precursor to decision making in the strategic planning 

process to ensure the current and future endeavors are in line with the company’s core 

competencies and strengths. This analysis is typically performed by a panel of experts 

leading to factual and informed conclusions. It remains however qualitative and is 

insufficient to judge the economic viability of a strategy. 

3.2.2 Five forces analysis 

The five forces analysis is a competitive assessment proposed by Michael Porter 

[69] in 1979 to help a company better position itself within an industry. As its name 
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implies, it is articulated around five forces, the collective strength of which ultimately 

determines the profit potential of an industry. These are the threat of new entrants, the 

threat of substitute products, the bargaining power of suppliers, the bargaining power of 

customers, and the intensity of rivalry amongst competitors. The role of management is 

therefore to find a position and then steer the company towards this position where the 

company is most likely to defend itself successfully against these threats. 

The threat of entry is related to new competitors wishing to enter the market and gain 

market share. The seriousness of this threat depends both on the natural barrier to the 

entry and the reaction of established players. In the aerospace industry, the threat of entry 

is quite low due to the capital investment required as well as the steep learning curve to 

reach a point where products and services become competitive. Political impetus may 

lower this entry barrier by subsidizing research and development but cannot remove it 

completely. In the context of civil aircraft development, the availability of maintenance 

networks around the world to quickly service and ensure continuous and smooth 

operations of airliners is an issue that new entrants keep facing. 

The threat of substitute products is related to their ability to offer price-

performance trade-offs sufficient to entice customers to switch. Unless the legacy product 

can differentiate itself sufficiently from the substitute, it is likely that the substitute will 

get some market share and therefore limit profits. In the context of the aerospace 

industry, few substitutes exist to commercial aircraft with the exception of high speed 

rail. 

The bargaining power of customers is related to their ability to put the firm under 

pressure when they have the ability to switch manufacturers. This is prevalent when the 
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buyer concentration to firm concentration ratio is quite low, when buyers purchase in 

large volumes, and when the products are undifferentiated and can easily be substituted 

by other products from the competition. 

The bargaining power of suppliers is related to their ability to raise price without 

the possibility for the manufacturer to pass this price increase to the final consumer in 

elastic markets. This characteristic is mostly prevalent in industries where suppliers are 

few, where their products are differentiated, and where the switching costs from one 

supplier to another are high. 

The last force identified by Porter is the intensity of rivalry which may take 

several forms such as price competition, race for first entry into service, and advertising. 

The strength of this last force is related to the number of competitors present in the 

market as well as to their relative sizes. The absence of differentiation between the 

products offered and the absence of growth potential within the market further 

exacerbates this rivalry. For civil aircraft manufacturers, the competition is intense 

despite the limited number of competitors. Indeed, each of them is fighting “tooth and 

nail” to gain market share which ensures a stream of revenues down the road with 

maintenance services and the sale of spare parts.  

Strength and shortcomings of the five forces analysis 

Porter’s five forces analysis provides a framework to perform a competitive 

assessment to check the positioning of a company within the industry sector and to ensure 

that the company avoids as much as possible intense competitive pressure. It is therefore 

a good starting point to evaluate a company’s strategy. Unfortunately, this is a qualitative 

analysis which does not help in estimating or forecasting what the outcome would be in 
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terms of sale volumes, market share, and overall profitability of a particular competitive 

scenario. 

3.2.3 Game theoretic analysis 

Game theory is a means of approaching, analyzing, and optimizing decision 

making problems featuring several parties, each with a rational behavior but possibly 

conflicting interests. When the analysis includes competitors and alternative product 

developments, then it is suitable and pertinent for use in strategic planning and to 

substantiate decision making. Even though there is evidence of prior use of game 

theoretic rationale in economics [70] and in evolutionary sciences [71], game theory as it 

is known today was formalized only in 1944 by mathematicians John von Neumann and 

Oskar Morgenstern in the Theory of Games and Economic Behavior [72]. 

A game may be a model of a competitive situation, and game theory is a set of 

mathematical methods for analyzing these models and selecting optimal strategies. Even 

without complete knowledge of other stakeholders’ decisions or resources, game theory 

is useful for enumerating the decisions available and for evaluating these options or 

“moves”. When a company’s investment decisions are contingent upon the competitors’ 

moves, it becomes a helpful tool in evaluating strategic decisions because it includes a 

means of predicting how competitors will behave. Of interest are competitive games 

which may be described in a four dimensional space with the players, the actions 

available to them, the timing of these actions, and the payoff structure of each possible 

outcome. Enumerating these elements may be done differently depending on the 

situation. Two popular choices used for simple games are the normal form, or matrix 
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format, and the extensive format. These are shown for the famous prisoners’ dilemma 

respectively in exhibit (a) and (b) of Figure 12 

Once a competitive game is defined, the purpose of a game theoretic analysis is to 

solve for an equilibrium concept, of which the Nash equilibrium is the most famous. This 

concept was first formulated by John Nash [73] in 1950. “The Nash equilibrium is a 

profile of strategies such that each player’s strategy is an optimal response to the other 

players’ strategies” [74]. In other words, the quest for a Nash equilibrium is an 

optimization process performed in the action space which searches for a set of actions 

and reactions from which none of the competitor has any incentive to deviate [75]. To 

illustrate the concept of the Nash equilibrium, the prisoners dilemma presented in Figure 

12 may be used. In this case, the couple (Strategy 2, Strategy 2) is the only Nash 

equilibrium from which two non-cooperating players have no incentive to deviate. It is 

dominated by the couple (Strategy 1, Strategy1) but this couple is not a stable equilibrium 

as the two players both have an incentive to deviate and to switch strategy. 

 

Figure 12: Normal form and extensive form representation of a strategic game 

 

More complex scenarios may be analyzed using a game theoretic approach with 

different equilibrium concepts such as subgame-perfect Nash equilibrium, Bayesian Nash 

equilibrium, and perfect Bayesian equilibrium. These equilibriums will be introduced as 

Normal Form Representation

(a)

Competitor 2

Strategy 1 Strategy 2

Competitor 
1

Strategy 1 -1, -1 -9,0

Strategy 2 0,-9 -6,-6

Extensive Form Representation

(b)

Competitor 1

Competitor 2

Strategy

2

Strategy

1

Strategy

2

Strategy

1
Strategy

2

Strategy

1

Competitor 2

-1, -1 -9, 0 0, -9 -6, -6

: Denotes no knowledge
of the actual state by the player
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necessary over the course of this dissertation and an interested reader is referred to 

Gibbons [76] for a more in-depth treatment of these equilibriums. 

Strength and shortcomings of the game theoretic analysis 

Game theory has been widely embraced by both academics and practitioners. 

Game theoretic related work has been linked to eight different Nobel Memorial Prizes in 

Economic Sciences. The success of this analysis can be attributed to several factors. The 

first one is its ability to perform both qualitative and quantitative competitive analyses 

which are in great demand in an increasingly competitive world. The second is the 

versatility of the method which can handle competitive problems ranging from simple 

simultaneous games, to more involved dynamic games with incomplete information, and 

to signaling games. Another reason for this success is the transparent implementation 

combined with a theoretically sound foundation leading to a wide acceptance amongst 

academics and therefore a wide exposure to future practitioners. 

However, game theory relies heavily on the concept of rationality which, in 

traditional economic models, is the maximization of utility. As a result, players will 

always act to gain as much as possible regardless of how these actions affect other 

players. But is this really the case? 

It is indeed not obvious that economic agents always take rational decisions and 

French economist Maurice Allais [77] showed that sometimes they do not make decisions 

that appear rational according to the prevalent expected utility model. In particular, 

behavioral patterns have shown both a certainty effect whereby decision-makers over-

weigh outcomes that are considered certain relative to outcomes that are merely probable, 

and a reflection effect whereby decision-makers exhibit a shift from risk-aversion for 
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positive prospects to risk-seeking for negative prospects. These effects imply a departure 

from the utility-maximization principle of neoclassical economics that defines rational 

decision making and that underpins game theoretic approaches. 

Furthermore, Nash equilibriums do not always yield plausible solutions that are 

likely to be observed in the real world.1 Observing this conflict between predictions from 

rational models and observed behaviors, economists have developed less stringent 

models of rationality helping to connect the rational and the psychological. Models of 

bounded rationality [78] [79] argue for instance that the rationality of economic agents 

(decision-makers in particular) is limited by the information they have, the cognitive 

limitations of their minds, and the finite amount of time they have to make a decision. 

Other economic models assume that only a sufficiently large number of economic agents 

can be approximated to act rationally. 

3.2.4 Prospect theory 

Further improvements to the game theoretic analysis have been made using 

behavioral economic theories. Daniel Kahneman and Amos Tversky are experts in this 

field and have coined the term “prospect theory” in their seminal paper [80] to describe a 

new behavioral theory that may be used for a behavioral game theoretic approach.  

Prospect theory aims at describing how economic agents chose between 

probabilistic alternatives that involve risk and uncertainty when the probabilities of 

outcomes are known. It recognizes that decisions are based on judgments which are 

biased assessments about the external state of the world and that decisions are 

                                                 

1 Repeated prisoner dilemma 
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challenging because of the difficulty of assessing their consequences and because of the 

conflicting internal trade-offs they usually require. The theory addresses how these 

choices are framed and evaluated in the decision making process. The authors argue that 

there are two phases in the choice process, an early phase of editing and a subsequent 

phase of evaluation.  

The editing phase is a preliminary analysis of the proposed prospects often 

leading to a reformulation and a simplification of their representations. Several operations 

transform the outcomes and probabilities associated with these prospects in a fashion that 

mimic how decision-makers actually process the information. The first type of operation 

stems from the observations that economic agents usually do not formulate the outcome 

of a choice in terms of absolute values or magnitude but rather as relative values with 

regards to something that they are familiar with. During this operation, the prospects are 

therefore reformulated in terms of gains and losses with respect to a reference point 

which is usually the baseline strategy or “business as usual”. The second and third types 

of operations are combination and segregation. They aim at simplifying the situation by 

either lumping together prospects with similar outcomes or, on the opposite, segregating 

prospects between their risky component and their riskless component. Next is the 

cancellation operation which consists in discarding components that are shared by all the 

prospects. Finally, another round of operations is the simplification which consists in 

discarding extremely unlikely outcomes, and the detection of dominance which consists 

in scanning alternatives to detect dominated ones that are rejected right away. 

The evaluation part is the second part of the analysis during which the edited 

processes are evaluated in order to select the one with the highest value. This evaluation 
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is done using two scales: one associates a decision weight to the probabilities of each 

prospect, while another one assigns a subjective value to each outcome. Going further 

into the details of the generation of these scales is beyond the scope of this thesis. One 

aspect, the shape of the value function is quite interesting however. First, the value curve 

is “centered” on the reference point obtained earlier which determines whether the 

prospect outcome is a relative loss or a relative gain. Next, using the reflection principle 

which states that economic agents have a different attitude with regards to losses and 

gains, the curve exhibits risk-aversion for the profit section (concave shape) while it 

exhibits risk-seeking for the loss section (convex shape). This is in stark contrast with 

usual utility curves. Finally, another salient characteristic is that the losses are perceived 

as more detrimental than gains. This leads to a steeper slope for the value curve in the 

losses quadrant than in the gains quadrant as shown in Figure 13. 

 

Figure 13: Notional value function representation 

Strength and shortcomings of the prospect theory 

The prospect theory proposed by Kahneman and Tversky is a descriptive model. 

It tries to model real-life behaviors as observed in many controlled clinical experiments 

Value Function Representation

Gains

Value

Losses

Reference Point
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and therefore exhibits ad hoc patterns consistent with some of the critics of purely 

rational utility–based models. In particular, it accounts for the fact that economic agents 

have different risk attitudes with regards to losses and gains, exhibiting risk-aversion in 

choices involving sure gains and risk-seeking in choices involving sure losses.  It also 

models the fact that losses are considered more penalizing than gains. 

However, being a descriptive model, it lacks a strong theoretical foundation as 

well as practical ways of estimating both the value function and the weighting function 

required for the evaluation step. 

3.2.5 Competitive methods:  a summary 

Table 16 summarizes the main strengths and weaknesses of the methods 

previously described. From this table, it appears that none of the methods is perfect to 

perform a competitive analysis. Both the simpler game theoretic approach and the 

behavioral game theoretic approach are able to perform a quantitative analysis which will 

help substantiate a business plan. On one hand, a game theoretic approach presents a 

simpler and more transparent way to perform the analysis at the cost of assuming perfect 

rationality of decision-makers. On the other hand, the behavioral game theoretic approach 

proposes an alternative to better model human behavior at the cost of defining complex 

and potentially inaccurate value and weight functions. It is therefore believed that a 

simpler game theoretic analysis will better model the highly analyzed and highly 

substantiated choices made by decision-makers in the aerospace industry. 
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Table 16: Strengths and Weaknesses of Competitive Analysis Methods 

 
SWOT 

Analysis 

Five Forces 

Analysis 

Game 

Theoretic 

Analysis 

Behavioral 

Game 

Theoretic 

Analysis 

Ease of 

implementation 

by analysts    
 

Ability to handle 

qualitative 

analysis     

Ability to handle 

quantitative 

analysis 
  

  

Handle observed 

economic agent 

behaviors 
   

 

 

Comparisons between these competitive scenario investigative techniques allow 

the statement of the second research hypothesis underlying this work: 

Hypothesis 2—Game theory for investigation of economic robustness with competition 

In the context of aerospace research and development programs, game theory methods 

enable transparent and traceable analyses that allow decision-makers to investigate the 

economic robustness of selected technology and product development streams in a 

competitive environment characterized by uncertain moves by the competition. 
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CHAPTER 4: REAL OPTIONS THINKING 

 

4.1 Genesis and challenges 

In the previous chapter, some of the methodologies applicable to decision making 

problems for capital investments in aerospace research and development programs were 

presented. Some candidate methods were down-selected on the assumption that they 

conceptually fit the requirements of this research endeavor. Still, these methods come in 

many different flavors depending on the application and more generally the context of 

their use. In this chapter, a thorough review of the real options literature is presented to 

identify which methods are most suitable for this research. Being a rather new paradigm, 

the real options thinking field is quite fluid with an ever changing state-of-the-art. 

4.1.1  Borrowing a paradigm from the finance industry 

There is no doubt that real options inspired methodologies present an attractive 

concept for (scarce) capital allocation budgeting problems due to their abilities to better 

mimic the decision processes that take place as uncertainty unfolds. These methodologies 

inspired by the concept of contingent claims in finance enable valuations that account for 

the flexibility offered to management to react, update business plans, and change tactical 

plans to steer projects into profitable directions. Indeed, similarly to a financial option 

which is the right but not the obligation to exercise a predefined action within an 

allocated timeframe, a real option is the right but not the obligation to take action. ‘Take 

action’ is purposefully a vague term as it encompasses many different notions such as 
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abandoning a research and development investment, continuing the funding of a 

staggered research and development investment, expanding a promising research and 

development investment, or finally, deferring a research and development investment 

until conditions improve. This ability to better relate to what is actually happening daily 

within companies has been the driver for most of the research in the field of real options. 

Krychowski [81] reports that the literature on real options has increased exponentially 

since Myers [82] first coined the term in 1977. Moreover, real options inspired 

methodologies have been used in the aerospace industry for many different applications: 

valuation of aircraft purchase option at Airbus [83], valuation of adaptability in aerospace 

systems [84], investment under uncertainty in the air transportation infrastructure [85], 

and aircraft development investments at Boeing [86] [87] and Embraer [88]. 

4.1.2 An interesting concept harder to implement in practice 

Usual assumptions in the framework of Black, Scholes and Merton 

Many of the early applications of real options theory revolved around the 

transposition and subsequent use of Black-Scholes inspired formulae to value corporate 

investments featuring flexibility. In 1998, Luehrman [89] described a step-by-step 

methodology in the Harvard Business Review to value phased-investment opportunities 

using the Black-Scholes formula for call options. The application case was the evaluation 

of a growth option opportunity by a chemical company wishing to expand its production 

facilities. Later, Shank et al. [90] use the Black-Scholes-Merton model and the resulting 

call option valuation formula to estimate the value of investing in internet infrastructures 

to support the potentially growing e-business. More recently, Pinon [91] uses the Black-
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Scholes formula to value flexible technology investments in underutilized regional 

airports to relieve capacity-constrained airports in metroplex areas.  

Despite the breadth of applications using the Black-Scholes setting and the Black-

Scholes formula, there is generally little effort to justify whether the model and its 

assumptions are actually suitable. In Chapter 3.1.5, the real options analogy was first 

introduced while APPENDIX G:  presented the setting of the Black-Scholes model and 

the derivation of the Black-Scholes option valuation formula. In Table 17, the main 

assumptions underpinning the model are reminded, while Table 18 attempts to translate 

these assumptions for use in real options valuation.  

(i) The market has no arbitrage 

(ii) 
The market has no fees or trading 

costs 

(iii) The asset does not pay any dividend 

(iv) 
The asset follows a Geometric 

Brownian Motion 

(v) 
Both volatility of asset and risk-free 

interest rate are constant 

(vi) 

Asset and bond may be bought in any 

quantity, including negative amount 

and fractions 

(vii) 
Claim can only be exercised at 

maturity 

Table 17: Main assumptions underpinning the 

Black-Scholes model 

(i’) Not applicable 

(ii’) Not applicable1 

(iii’) 
The underlying project has no value 

leakage 

(iv’) 
The underlying project value follows 

a Geometric Brownian Motion 

(v’) 
Volatility of underlying project value 

and risk-free interest rate are constant 

(vi’) Not applicable 

(vii’) 
Taking action to continue or change 

course can only be made at maturity 

Table 18: Translating main assumptions for real 

options valuation using the Black-Scholes model 

 

A closer look at the set of assumptions leads to their classification in two 

categories. One set of assumptions is made to ease the derivation of the Black-Scholes 

                                                 

1 It is sometimes argued that buying a real option involves some form of trading cost (cost to invest in 
human resources, cost to invest in infrastructure). Nevertheless, in many cases these costs can be 
incorporated into the required investment to fund one phase of the business venture.  
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formula. It leads to an academically pleasing yet somewhat unrealistic setting. The other 

set of assumptions relates to the foundation of the methodology. Practice has shown that 

most of the assumptions belonging to the first category may be somewhat relaxed and the 

Black-Scholes formula can either be adjusted easily, or can be left as is and yet provide 

reasonably accurate solutions.  

For instance, assumptions (ii) and (vi) are unrealistic at best as there are few, if 

any, market devoid of any trading costs that would materialize by a zero spread between 

the bid and ask prices. Besides, even if it were possible to short sell and take a negative 

position in a security, it is not usually possible to take a fractional position in a security as 

assumed by the model. Assumption (iii) relates to the modeling of the underlying security 

and whether or not this security is issuing dividends over the course of the option life. 

This assumption may be relaxed by using the Black-Scholes formula with dividends. 

Assumptions (iv) and (v) relate to the modeling of the underlying asset behavior and an 

ad-hoc time-series analysis needs to be performed to ensure the model is not mis-

specified. Most asset prices do not follow a true Geometric Brownian Motion as 

evidenced by the volatility smile for deep in-the-money and deep out-of-the-money 

options and by the heteroscedasticity displayed by most financial time series. The 

deviation is nevertheless not large enough to invalidate the results and the Black-Scholes 

formula still provides a good enough approximation. 

In a real options environment, the assumptions related to the dynamics of the 

underlying asset are directly translated into assumptions related to the dynamics of the 

value of the underlying project featuring flexibility. Consequently, as long as the project 

value follows a Geometric Brownian Motion as prescribed in assumption (iv) and as long 
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as the volatility and risk-free rate are constant over time as prescribed in assumption (v), 

these assumptions are still valid. Similarly, if the flexibility offered to management in the 

underlying project can be modeled as a European-type real option, then assumption (vii) 

still holds. Finally, if the project does not lose some of its value over time (no value 

leakage due for instance to the cost to defer a decision), then assumption (iii) regarding 

the dividend payments also holds true. If not, a modified Black-Scholes with dividends 

framework may be used as was proposed earlier for financial options.  

Assumptions (i), (ii) and (vi) are more difficult to translate as they relate to the 

ability to replicate any claim with a self-financing replicating portfolio. Indeed, the 

Black-Scholes model relies on the assumption that in a complete market, it is possible to 

replicate every claim with an arbitrary payoff using a self-financing portfolio consisting 

of a dynamically adjusted linear combination of the basis assets present in the market. 

Therefore, the no-arbitrage price in a complete market can be calculated using this self-

financing replicating portfolio. Assumption (i) ensures that, whatever the state of the 

world, the self-financing portfolio having the same payoff as the claim must have the 

same price. Assumption (ii) ensures that no loss occurs whenever the replicating portfolio 

is constructed and continuously adjusted to replicate the claim. Finally, assumption (vi) 

ensures that the claim is attainable, which means that it is always possible to replicate the 

claim using a linear combination of assets present in the market. This includes the ability 

to short some assets (ability to borrow and sell these assets which mathematically means 

the ability to have assets within the portfolio that have a negative weight) and the ability 

to have fractional quantity of some assets (weight of some assets in the portfolio need not 

be integers which allows to better track the claim payoff).  
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These assumptions are problematic for a real options application because the 

underlying project value is not a traded asset in any market. Therefore, there is no 

arbitrage-free price for the underlying project and therefore, there is no guarantee of a 

single price for the replicating portfolio made up of the underlying project and some other 

securities. In addition, it is not obvious that the market can be complete. In fact, the 

market is likely to be incomplete and the claim is most probably not attainable. This 

means that its payoff cannot be replicated with a self-financing portfolio made up of a 

combination of the basis assets in the market. Finally, even if these two assumptions still 

hold true, it is not conceptually possible to construct a replicating portfolio with no 

restriction on the ability to short sell and no restriction on the ability to take fractional 

positions on the underlying project: after all, how to borrow half of a project and sell the 

other half? With a major assumption underpinning the Black-Scholes formula derivation 

violated, any use of the Black-Scholes formula for real options applications now looks 

suspicious. Fortunately, beyond the original hedge and partial differential equation 

pioneered by Black and Scholes, some other techniques may be used to value financial 

options.  

Relaxing assumptions with the martingale approach 

Another popular approach is the martingale1 approach initially proposed by Cox 

and Ross [92]. It is more mathematically involved as it borrows the concepts of 

probability measure, equivalent probability measure, and change of probability measure 

                                                 

1 A martingale is a stochastic process whose current value is its expectation. In finance, the discounted 
price of an asset is assumed to be a martingale since the asset current price is its future expected discounted 
price.  Mathematically, a stochastic process �� is a martingale with respect to a probability measure ℚ if 
and only if the following two conditions are satisfied: �ℚB|��|E < ∞ and �ℚB��|ℑ.E = ��   for . ≤ � 
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from probability theory. In essence, the martingale approach is based on five steps to 

value claims. In the first step, the Girsanov theorem is invoked to change the probability 

measure from the physical probability measure to an equivalent probability measure ℚ 

such that the discounted stock process is a martingale under this new measure. In the 

second step, a stochastic martingale �� under the new probability measure ℚ hitting the 

discounted claim value p at expiration is constructed using a conditional 

expectation �� = �ℚBq�=Yp|ℑ�E. In the third step, the martingale representation theorem 

is invoked to find a previsible process #� that relates the variation of the martingale �� 

hitting the discounted claim at expiration to the discounted asset martingale q�=Y��, which 

is expressed as follows:  3B��E = #�3Bq�=Y��E. This step is powerful because it allows to 

mathematically link the evolution of the discounted claim process to that of the 

discounted asset process through a stochastic process that is previsible1. The fourth step is 

to construct a self-financing portfolio made up of the discounted asset in quantity #� and 

the discounted bond in quantity $� such that its value exactly replicates the value of the 

discounted claim process ��. This portfolio therefore hits the value of the discounted 

claim qrp at expiration and its value is expressed as �� = #�q�=Y�� + $�q�=Yq�. The 

non-discounted counterpart portfolio made of real asset �� and real bond q� is given 

by p� = #��� + $�q�. This portfolio hits the value of the claim at expiration and it is 

self-financing since the change in its value is given by 3p� = #�3�� + $�3q�, which is 

exactly the change in the value of the assets contained within the portfolio. The final step 

                                                 

1 A previsible process is a process which only depends on the information available up to the current time, 
but not on any future information. The concept is interesting to construct portfolios since the existence of 
previsible processes, each of which models the weight of one asset within the portfolio, ensures that the 
portfolio can be constructed in real time with contemporary information. 
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invokes the no-arbitrage condition to establish the current price of the claim p� which 

must be the current value of this replicating self-financing portfolio. This is also exactly 

the expectation under probability measure ℚ of the discounted 

claim  p� = q��ℚsqr=Ypr|ℱ�t. For a more thorough analysis of the martingale 

approach, the reader is referred to the textbook by Baxter and Rennie [93]. 

The martingale approach presents several advantages for derivative pricing. The 

first advantage is that the claim price is formulated as an expectation instead of a partial 

differential equation. This allows the use of Monte Carlo simulations to numerically 

compute the expectation and therefore estimate the claim value [94]. Another advantage 

of the martingale approach is that no restrictions are made regarding the claim payoff 

except that it is attainable. This means that the claim payoff can be arbitrary and even 

path-dependent. This more general setting also allows the relaxation of assumption (vii) 

that restricted the Black-Scholes partial differential equation approach to European-type 

claims. With the martingale approach, American, Bermudan, and Asian types of claims 

may be priced, provided the claim payoff is attainable. For instance, an American call 

option would be valued by maximizing the expectation over all possible exercise times u 

up to the option maturity and would simply result in the following expectation 

computation  p� = .51�vwvrSq��ℚsqw=Ypw|ℱ�tT. A third advantage of the martingale 

approach is that it does not require that the underlying asset volatility and the risk-free 

interest rate remain constant over time, thus relaxing assumption (v). Indeed, the 

martingale approach requires only the computation of an expectation and therefore, the 

distribution of the claim value at any time up to the expiration is sufficient. In contrast, 

using the original approach, time-varying parameters would lead to a partial differential 
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equation featuring time-dependent coefficients and there is no clear way to proceed 

further and solve that equation. 

Relaxing assumptions with the change of numéraire approach 

Another approach is the change of numéraire1 approach initially proposed by 

Jamshidian [95] for bond option pricing and generalized later by Geman et al. [96] for 

derivative pricing. It is very similar to the martingale approach in that it uses some 

change of probability measure and requires the computation of an expectation. It may 

thus be seen as a generalization of the martingale approach. In the martingale approach, 

all processes are discounted using a risk-free bond. This discounting may be interpreted 

as a normalization step since each and every process is now defined relative to the risk-

free bond process. In this relative pricing environment, the risk-free bond plays the role 

of the valuation standard, also known in mathematical finance as a numéraire or a 

deflator. However, nothing prevents the use of a different numéraire or in other words, 

nothing prevents the use of a different standard to perform valuation: what if an asset 

price for instance is used as the new normalizing standard or the new numéraire? 

Although this approach seems complicated, this is in fact very much akin to a valuation 

made in two different currencies for which the unitary bill (or coin) of each currency 

represents different numéraires. 

Like the martingale approach, the change of numéraire approach can be 

decomposed into five main steps. In the first step, the Girsanov theorem is invoked to 

change the probability measure from the physical probability measure to an equivalent 

                                                 

1 A numéraire is a basic standard by which value is computed. Acting as the numéraire is one of the 
functions of money which serves as the accounting unit to measure the worth of different goods and 
services relative to one another. 
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probability measure ℚ′ so that the risk-free bond process deflated by the asset price 

process  q�  ��⁄   is a martingale under this new measure. In the second step, a stochastic 

martingale �� under the new probability measure ℚ′ hitting the deflated claim value at 

expiration is constructed using the numéraire �� and the following conditional 

expectation process is constructed �� = �ℚzB��=Yp|ℑ�E. In the third step, the martingale 

representation theorem is invoked to find a previsible process #� that relates the variation 

of the martingale �� hitting the deflated claim at expiration to the relative risk-free bond 

martingale ��=Yq�. This relationship is expressed as follows: 3B��E = #�3B��=Yq�E. The 

fourth step is to construct a self-financing portfolio made up of the deflated risk-free bond 

process in quantity #� and the deflated stock in quantity $� such that its value exactly 

replicates the value of the deflated claim process ��. This portfolio therefore hits the 

value of the deflated claim p  ��⁄  at expiration and its value is expressed as �� =#���=Yq� + $���=Y��. The non-deflated counterpart portfolio made of real asset �� and 

real bond q� is given by p� = #�q� + $���. This portfolio hits the value of the claim at 

expiration and it is self-financing since the change in its value is given by 3p� =#�3q� + $�3��, which is exactly the change in the value of the assets contained within 

the portfolio. The final step invokes the no-arbitrage condition to establish the current 

price of the claim p� which must be the current value of this self-financing replicating 

portfolio and which is also exactly the expectation under probability measure ℚ′ of the 

deflated claim: p� = ���ℚzs�r=Ypr|ℱ�t. In summary, the change of numéraire technique 

is very similar to the martingale approach as it follows the same steps and makes use of 

the same theorems. The only difference is that the equivalent martingale measure is not 

made using the risk-free bond deflator but rather another asset, which in this case, is the 
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underlying asset �� since there are only two assets in the economy. A more thorough 

analysis of change of numéraire is given in Duffie [97]. 

Being similar to the martingale approach, the change of numéraire approach 

retains most of the advantages described earlier. It is however more general as the 

numéraires can be chosen so as to simplify expectation computations. This is helpful to 

neutralize one source of risk when the option payoff contains several different sources of 

risk. For instance, it is customary to use this approach when pricing under a time-varying 

random interest rate in case the price of a bond maturing at the option expiration is used 

as numéraire. A more relevant example for a real options application is the case of 

complex options on n different assets. In this context, the change of numéraire approach 

simplifies the problem by neutralizing one source of risk and therefore reducing the 

problem to n-1 different sources of risk. For instance, let’s hypothesize an environment 

where a company nurtures a portfolio of two competing, uncertain, but potentially 

promising projects. The company does not have the financial resources to fully fund these 

two projects concurrently and consequently must choose at one point in time which one 

to pursue. This setting is very similar to a rainbow “call on max” option which gives the 

option holder the ability to select one of two assets to purchase. In this case, the change 

of numéraire is useful if the new numéraire is taken as one of these two assets. Indeed, 

the problem is reduced to a single source of risk: the asset used as numéraire has a 

relative or deflated process which is trivially constant and equal to one, while the other 

asset deflated process is a ratio of two stochastic processes which is treated as a single 

stochastic process [98].  
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In the preceding paragraphs, three approaches to derivative pricing were 

presented and Table 19 summarizes the steps involved in each of them. This is obviously 

not an exhaustive list as many other methods have been used including binomial trees 

[99], utility-based techniques [100] as well as empirical methods such as implied 

binomial trees [101]. Still, the methods presented have progressively relaxed some of the 

original assumptions of Black and Scholes which may be useful for real options analysis: 

the interest rate does not need to be constant, the volatility parameter does not need to be 

constant, the option does not need to be of European type, and the asset may have 

dividends.  As a result, these methods grow in terms of applicability with the original 

hedge and partial differential equation approach being the most restrictive, while the 

martingale approach and the change of numéraire approach provide a richer and wider 

domain of applicability. Still, one fundamental assumption of the original Black and 

Scholes setting remains: the requirement that claims be attainable and markets complete, 

which underpins the ability to use no-arbitrage arguments and find replicating portfolios. 

This observation and quest for a rigorous option-thinking framework leads to the first 

sub-research question as follows. 

Research Question 1.1—Creation of an option-thinking framework 

In the context of uncertain corporate investment analysis, how can state-of-the-art 

option-based valuation methodologies be altered and improved upon to ensure their 

domain of application is consistent with their underpinning assumptions? More precisely, 

how can practitioners benefit from an option-thinking perspective while acknowledging 

the issues surrounding the no-arbitrage argument arising from the market 

incompleteness and the resulting inability to find replicating portfolios of real assets? 
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Table 19: Required steps for Black-Scholes formula derivation using three valuation techniques  

Hedge and PDE  

Approach 

Black, Scholes – 1973 – [66] 

Merton – 1973 – [67] 

Step 

1 

Using Ito’s lemma, derive 

PDE describing evolution of 

claim value 3p�  function of B�, ��E 

Step 

2 

Construct self-financing 

portfolio of both underlying 

asset  �� and bond q� having 

same dynamics 

Step 

3 

Identify drift and diffusion 

terms by Unique 

Decomposition Theorem and 

add boundary conditions 

Step 

4 

Solve PDE to yield option 

price using Fourier transform 

or change variables to 

transform PDE into heat 

equation 

 

Martingale  

Approach 

Cox, Ross – 1976 – [92] 

Harrison, Kreps – 1979 – [102] 

Step 

1 

Find a probability measure ℚ 

so that the discounted stock is 

a ℚ martingale  �ℚBq�=Y��|ℑ�E = q�=Y�� = �� 

Step 

2 

Construct a ℚ martingale 

process for the discounted 

claim with value p at maturity �� = �ℚBqr=Yp|ℑ�E 

Step 

3 

 

Find a previsible process #� 

such that: 

 3�� = #�3�� 
 

Step 

4 

Construct self-financing 

portfolio �� holding #�  of 

discounted stock �� = q�=Y�� 

and  $� of discounted bond 

such that it replicates �� �� = #��� + $�qr=Yq� = �� 

Step 

5 

Establish no-arbitrage price p� 

of claim p as present value of 

replicating portfolio q��� q��� = #��� + $�q� = q��� 
which is also p� = q��ℚBqr=Yp|ℑ�E 

 

Change of Numéraire 
Approach 

Jamshidian – 1989 – [95] 

Geman, El Karoui, Rochet – 1995 – [96] 

Step 

1 

Find a probability measure ℚ′ 
with numeraire �� so that q� ��⁄  is a ℚ′ martingale  �ℚzB��=Yq�|ℑ�E = ��=Yq� = ��  

Step 

2 

Construct a ℚ′ martingale 

process for the normalized 

claim with value p �r⁄  at 

maturity  �ℚzB�r=Yp|ℑ�E = p� ��⁄  

Step 

3 

Find a previsible process #� 

such that: 

 3�� = #�3�� 

Step 

4 

Construct self-financing 

portfolio �� holding #�  of 

normalized bond �� = ��=Yq� 

and  $� of normalized stock 

such that it replicates �� �� = #��� + $��r=Y�� = �� 

Step 

5 

Establish no-arbitrage price p� 

of claim p as present value of 

replicating portfolio ���� ���� = #�q� + $��� = ���� 
which is also p� = ���ℚB�r=Yp|ℑ�E 

 

 

4.1.3 Substantiating real options thinking: the Marketed Asset Disclaimer 

Substantiating the availability assumption of a “twin security” in the financial 

markets that can be used to perfectly replicate the value of the business prospect is 
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difficult. There is indeed little reason to believe that the value of a corporate investment, 

which is subject to both private and market risks, would exhibit over its entire life a 

perfect correlation with one particular stock in each and every possible state of the world. 

This is a weakness facing many real options methods since the lack of a twin security to 

construct a replicating portfolio precludes a priori the use of no-arbitrage arguments for 

pricing purposes. 

In 2000, Copeland et al. [103] argue that in the absence of an explicit market-

traded twin security, the value of the business prospect without flexibility and therefore 

computed as a net present value is the best known proxy for a traded security having 

perfect correlation with the corporate investment value. They state that “the option 

pricing approach gives the correct value because it captures the value of flexibility 

correctly by using an arbitrage-free replicating portfolio approach. But where does one 

find the twin security? We can use the project itself (without flexibility) as the twin 

security, and use its NPV (without flexibility) as an estimate of the price it would have if 

it were a security traded in the open market. After all, what has better correlation with 

the project than the project itself? And we know that the DCF value of equities is highly 

correlated with their market value when optionality is not an issue. We shall use the net 

present value of the project’s expected cash flows (without flexibility) as an estimate of 

the market value of the twin security. We shall call this the marketed asset disclaimer.” 

In 2001, Copeland and Antikarov [104] restate this assumption as follows “we are 

willing to make the assumption that the present value of the cash flows of the project 

without flexibility (i.e., the traditional NPV) is the best unbiased estimate of the market 

value of the project were it a traded asset”.  
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The Marketed Asset Disclaimer or MAD assumption is extremely powerful: by 

acknowledging that a twin security probably does not exist in the financial market and by 

supposing that the best unbiased surrogate for this twin security is the subjective 

estimation of the business prospect value without flexibility, practitioners can now use 

this fictitious twin security to build a replicating portfolio and therefore use the no-

arbitrage argument for the economic valuation. The assumption also implies that the net 

present value of the prospect is the best known unbiased estimate of the project’s market 

value if it were a traded asset and that no-one can “arbitrage” this project valuation. Still, 

it is important to take a step back and not be carried over by this assumption. The 

assumption allows practitioners to bridge a gap in the real options analysis and to 

transpose a method applied for financial option valuation to corporate investments 

valuation. It states that, when no twin-security can properly be found and used to build a 

replicating portfolio, then the best subjective surrogate is the value of the investment 

itself. The word subjective carries a lot of weight as the net present value of a corporate 

investment relies on assessments, many of which are subjective. For an aircraft 

development application, these subjective inputs may be the expected market penetration 

stemming from the sale of a new more efficient aircraft, the extra revenues generated by 

these sales as well as the costs to develop, certify, and produce the new aircraft. Borison 

[105] indicates that the assumption “ensures that the ‘Law of One Price’ is maintained 

internally between the investment and the options” but that due to the subjective nature of 

the valuation “arbitrage opportunities may be available between the corporate 

investment and traded investments if any traded investments are available.” In other 

words, the MAD assumption only ensures that the valuation is internally consistent but 
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arbitrage opportunities may still exist if the investment valuation is biased and if some 

traded assets that can act as the twin-security are available. 

Consequently, the MAD assumption is best used as a last resort if there are no 

traded assets that could be used in the replicating portfolio. Therefore, Copeland and 

Antikarov [106] advise analysts to rely primarily on capital markets to substantiate inputs 

in the prospect valuation since they believe that “the analysis would be incomplete if it 

ignored information contained in available market prices.” Borison [107] echoes this 

statement and argues that “if investments are evaluated using subjective, non-market 

assessments of these risks, the possibility of arbitrage is introduced” and that avoiding 

arbitrage possibilities requires that practitioners analyze “relevant spot, future, and option 

prices to determine the prices that capital markets have already established for an 

investment’s public risks.”  

So, how can this piece of advice be implemented in practice? Let’s assume for 

instance a performance improvement package (PIP) that improves the fuel-burn of a 

turbofan engine. Much of the value of the package for an airline is derived from the lower 

fuel consumption and therefore the lower operating costs which are directly related to the 

uncertain market price of jet fuel. Much of the package value to the airline remains 

uncertain: if the jet-fuel spot price goes up, so does the value of the PIP; on the other 

hand, if the jet-fuel spot price goes down, so does the value of the PIP. To preclude the 

possibility of arbitrage, the analyst should closely examine jet-fuel futures contract that 

have already established a market price for the jet fuel at different horizons. By using 

several jet-fuel prices, each corresponding to a different time horizon and each derived 
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from the jet-fuel futures, the analyst has included as much market information as possible 

in the construction of the performance improvement package business case. 

4.1.4 What about the dynamics of the underlying real assets value? 

Most of the literature on financial options and real options assumes that the 

underlying stock or the underlying real assets are following a Geometric Brownian 

Motion (GBM). A mathematical description of the Geometric Brownian Motion and its 

main characteristics is provided in APPENDIX A: . For financial stocks, the Geometric 

Brownian Motion assumption relies on the proof provided by Nobel Memorial Prize in 

Economic Sciences laureate Paul Samuelson [108] who argues that “properly anticipated 

prices fluctuate randomly”, an argumentation echoed by Fama [109]. Later, Samuelson 

[36] suggests using Geometric Brownian Motion to model the price evolution of risky 

assets. 

The model is interesting for several reasons. The first is its mathematical 

simplicity since it is parameterized by only two variables: a drift to account for the long-

term evolution and a volatility to characterize the diffusion. The second is that prices 

remain positive, which is in agreement with limited liability of stakeholders. The third is 

that returns can be either positive or negative and are uncorrelated, which is in agreement 

with the efficient market hypothesis and with the fact that no-one should be able to 

predict future returns based on past performance. Despite its mathematical elegance and 

its widespread use in financial models, the Geometric Brownian Motion is a 

mathematical model. Like many models used to capture and simulate complex 

phenomena, it has several shortcomings such as the inability to explain fatter tails in 
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observed return distributions [110], observed autocorrelations [111], and observed 

heteroscedasticity [112]. 

For real options applications, the use of Geometric Brownian Motion is 

widespread and applied to many different problems such as oil field exploitation value, 

intellectual property value, and technology portfolio value. Kemna [113] uses a 

Geometric Brownian Motion to simulate the value of exploiting an off-shore oil field 

subject to uncertain commodity prices. Weeds [114] assumes that the value of a 

technological patent evolves according to a Geometric Brownian Motion. Pinon et al. 

[115] assume that the value of airport technologies follow a Geometric Brownian Motion 

driven by the uncertainty in transportation demand.  

Despite this widespread use, the case for using Geometric Brownian Motion in 

real options applications is not clear-cut. Indeed, implicit in many applications is the fact 

that if the uncertainty follows a Geometric Brownian Motion, so does the business 

prospect value. This supposition is often made when dealing with prospects deriving their 

value from the price of an uncertain commodity (coal price, oil price, jet-fuel price…) or 

from an uncertain aggregated indicator (air transportation demand, market size…). A 

closer inspection reveals that this assumption is debatable for two reasons. First, it 

obviously requires that the uncertainty driving the value of the business prospect follows 

a geometric random walk. Better said, it requires that the Geometric Brownian Motion be 

a good enough approximation of the dynamics of these commodity prices. Unfortunately, 

this verification is seldom done by practitioners. Secondly, if the implication were to be 

true, it would require that the cash flows of the project conserve two things: the 

independence of the increments and the Gaussian nature of the distribution of increments. 
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There is no reason to believe that this is true, especially for complex cash flows that are 

not simple additions, subtractions, or multiplications of uncertain random quantities. 

Borison [105] argues that “While there may be good arguments for GBM with respect to 

equilibrium prices in highly liquid, widely accessible markets, there is no reason to 

believe that subjective assessments […] of the value of the underlying investment should 

follow GBM”. This is because “the assessed value of the underlying investments may be 

driven by specific events in specific time periods in a manner that looks nothing like 

random drift.” Following this observation, there is a need to extend current real options 

methodologies to ensure they can handle non geometric random walks. Many popular 

real options methodologies, such as the one advocated by Copeland and Antikarov [104], 

are based upon the marketed asset disclaimer hypothesis reviewed previously and make 

use of binomial trees for the valuation of the real options. Thus, they assume a geometric 

random walk process for the underlying corporate investment value. It is believed that a 

more generic approach able to relax this assumption would be beneficial.  

 

Research Question 1.1.1 — Enlarging the domain of applicability of real options 

How can the domain of application of current state-of-the-art real options methodologies 

be extended to include corporate investments with value processes that do not follow 

classic geometric random walks?  
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4.2 Numerical recipes for real options 

In the previous paragraph, the fundamental assumptions underpinning real options 

analysis have been reviewed. It is now time to investigate how a versatile analysis 

framework for real options thinking can be constructed. The framework shall be generic 

so as to be able to handle the wide spectrum of applications that real options practitioners 

may face while retaining most of the mathematical rigor required by the models and the 

assumptions underpinning these models.  

4.2.1 Three venues for real options evaluation 

In this section, three of the most common valuation techniques are presented. 

These include the partial differential equation approach, the lattice approach, and the 

Monte Carlo approach. Their respective strengths and weaknesses are highlighted to 

establish the most appropriate set of methods for corporate investment analysis in the 

aerospace industry.  

Partial differential equation approach 

The partial differential equation approach consists in solving the partial 

differential equation that represents the evolution of the real option value over time. The 

nature of the option and its payoff at expiration usually define the boundary conditions 

for the partial differential equation. Closed-form solutions to the partial differential 

equation may exist and are usually found by performing some changes of variables so as 

to transform the original equation into a simpler equation for which solutions are well 

known. This type of approach was chosen for instance by McDonald and Siegel [116] to 

estimate the value of delaying a corporate investment, and by Grenadier [117] to value 
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real options in leasing contracts. However, closed-form solutions do not generally exist 

for partial differential equations and therefore numerical approaches are used. Amongst 

them, finite-difference methods are popular and consist in both discretizing the time and 

price space while writing the differential terms of the equation in terms of central, 

forward, or backward differences.  Numerical approximations to solve partial differential 

equations for real options valuation have been used for different types of applications. 

For instance, Majd and Pindyck [118] value the options to delay, slow, or speed-up 

sequential corporate investments, Bernardo and Chowdry [119] study how firms choose 

between different types of corporate investments, and Dias and Rocha [120] analyze the 

valuation of oil exploration concessions featuring some horizon extension possibilities. 

For the partial differential equation approach to work, an explicit formulation of 

the underlying corporate investment process must be known. In the studies presented 

above, the underlying processes were either diffusion processes (McDonald and Siegel 

[116]), diffusion with leakage processes (Majd and Pindyck [118]), or diffusion with 

jump processes (Dias and Rocha [120]). The main challenge is that it is not always 

possible to find a well-known stochastic process that properly models the underlying 

corporate investment value. Another challenge is that calibrating these models is not 

trivial if little or no historical data is available to estimate the corresponding parameters: 

how to calibrate the volatility of a business prospect value following an assumed 

diffusion process if similar prospects have never been attempted before? In the 

aforementioned literature, there is little effort made to substantiate why a specific 

stochastic process is retained in the valuation models besides a generic “we assume that X 

follows Y”. 
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Although partial differential equations were initially embraced by academics, they 

have somehow fallen out of favor because they end-up being impractical. Indeed, as 

much as a discounted cash flow analysis is simple enough to be implemented in 

spreadsheets for use within a company, the valuation of a real option by solving a partial 

differential equation is harder to implement: it requires substantial mathematical skills to 

derive the differential equation itself and specific solvers to numerically resolve the 

equation. In the end, practitioners may reject the valuation that they consider a “black 

box” valuation. 

Lattices and trees 

Lattice methods have been undoubtedly some of the most popular methods for 

real- options pricing thanks to their visualization appeal and simplicity. The idea is to 

discretize continuous processes in many different time steps and then to restrict the 

evolution of the underlying asset by imposing a maximum number of outcomes in which 

the system may end-up at the following time step. Usually, this restriction is set to either 

two for binomial lattices, three for trinomial trees, and four for quadrinomial trees. There 

are many different flavors of lattices but the construction and use is very similar. 

Therefore, only the simplest binomial lattices will be covered in this dissertation. A more 

thorough description of lattice methods may be found in Cox, Stephen and Rubinstein 

[99].  

Similarly to the fact that a normal distribution can be approached by a large 

number of repeated binomial experiments, the normal distribution of the asset return is 

approximated by many repeated binomial experiments whereby the underlying asset 

return is either going up or down. These methods are divided into two steps: the first is 
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the construction of a lattice representing the evolution of the value of the underlying 

business prospect, and the second is the evaluation of the real option value at each and 

every node of the tree. To do so, a lattice starting at the current present value of the 

underlying asset and extending until the maturity of the real option is constructed, as 

shown in Figure 14. At each time step, the value of the asset may either go up with a 

certain probability or down with the complementary probability. The choice of the up and 

down probabilities as well as the choice of the up and down tick sizes are made in order 

to match both the volatility of the underlying asset and to ensure that the option value 

asset price dynamics is risk-neutral. In other words, the lattice parameters are determined 

such that the up and down tick sizes (one variable since the down-tick size is the inverse 

of the up-tick size) match the asset price process volatility, and such that the up and down 

probabilities (one variable again since both probabilities sum to one) ensure that the 

discounted asset price process is a martingale. 

 

Figure 14: Real options pricing with binomial lattices 

 

The next step is to superimpose the real option value to this graph by means of 

back-propagation. Back-propagation means that the real option value is first computed at 
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expiration using the payoff formula for the option under review and that the calculated 

values are then propagated backward in the lattice up to the present time. This step can 

vary somewhat depending of the type of option, whether it is a European, American, 

Asian, Bermudan, or any other type of option. For a European-type option, the value at 

expiration is estimated for each expiration-time node in the lattice using the value of the 

underlying business prospect previously computed. This value at expiration is then back-

propagated to the prior nodes of the lattice by computing the expected discounted value 

of the real option. This step is repeated until the very first node in the lattice is reached 

and the current value of the real option is found. 

Lattice methods have been widely used in the real options literature with many 

diverse applications. For example, Trigeorgis [121] uses binomial trees to value 

embedded options in leasing contracts such as the option to cancel, extend, or buy the 

leased asset. Stonier from Airbus [83] [122] uses binomial lattices to value real options 

embedded in aircraft purchase contracts for additional purchase rights, as well as for 

switching aircraft size. Lewis et al. [123] use binomial trees to value deferral options in 

research and development projects that are used to wait for more information to become 

available. 

The popularity of lattice methods is mostly due to their transparency and ease of 

application. Indeed, once a stochastic process is accepted to model the underlying asset 

value, the following steps consisting in the construction of the lattice and the valuation of 

the real option are both easy to implement and straightforward. This allows the 

implementation of lattice methods in spreadsheet which are commonly used in 

companies. Besides, the lattice methods provide practitioners with the ability to visualize 
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the whole underlying asset value evolution and the resulting decisions regarding the 

exercise or not of the real option. In addition, lattice methods allow an easier valuation of 

complex real options, such as American options, which are more realistically modeling 

decision making within a company since the tree allows the comparison between 

exercising the option prior to maturity and holding-on the real option. 

Like the partial differential equation approach, lattice methods require an explicit 

formulation of the dynamics of the underlying corporate investment process. The main 

challenge remains the unavailability of well-known stochastic processes to properly 

model the value of any underlying corporate investment. Even when it is possible, 

calibrating these models is not trivial due to the absence of historical data to estimate the 

volatility of the underlying business prospect. Unfortunately, this constrains the variety of 

applications for real options as many practitioners resort to the use of established models 

such as the ubiquitous Geometric Brownian Motion without substantiating the 

assumptions. Nevertheless, some efforts have been observed in recent years to depart 

from these limitations. For instance, Hahn and Dyer [124] use a modified lattice to value 

oil and gas switching options with dual-correlated single factor mean reversing stochastic 

processes. Bastian et al. [125] use a modified lattice to value flexibility and regime 

switching options that arise during the production of alternative fuels by choosing to 

favor either sugar or ethanol production. Still, this is a somewhat limited landscape: what 

about processes with jumps for instance? 

Monte Carlo Simulations 

Monte Carlo simulations are also popular to price real options and have been 

widely used to price financial options. Monte Carlo simulations originated in the 1940’s 
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with Ulam and Metropolis [126]. The approach consists in randomly generating many 

numbers following a given probability distribution to then perform some deterministic 

computations and to finally aggregate the results. The original argument for using Monte 

Carlo simulations to price real options is attributed to Boyle [94]. It is based on an 

observation made earlier in this dissertation stating that under the martingale or change of 

numéraire approach, an option value can be expressed as an expectation under the new 

equivalent martingale probability measure. If the option value can be reduced to an 

expectation, then it lends itself pretty well for Monte Carlo simulations because it only 

requires the random generation of many prices for the underlying asset using its 

probability distribution. 

Using the strong law of large numbers, it is known that the average of a sample 

converges almost surely to its expected value. For real options pricing purposes, it means 

that by generating a sufficiently large number of underlying asset price trajectories and 

therefore a sufficiently large number of option payoffs, it is possible to recover the 

expected value of the option payoff at maturity. Recalling the martingale approach 

presented in section 4.1.2, pricing options using Monte Carlo methods can be 

decomposed into four main steps. In the first step, the dynamics of the uncertain business 

prospect revenues is modeled with a stochastic process using both market and historical 

information. The market uncertainties that have the largest impact on the revenues of the 

business prospect are first identified and listed. They are then modeled using stochastic 

processes so that they can be used in the valuation of the business prospect. If these 

uncertainties are correlated, the correlation must be accounted for so that a proper 

behavior of the uncertain quantities can be used for the valuation. Some of the most 
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useful stochastic models used for real options analysis are shown in Figure 15. They 

include pure diffusion processes and mean reverting processes, both with or without 

jumps.  

 
Figure 15: Monte Carlo simulations using some popular stochastic processes 

So far, the stochastic processes which model the observations of analysts are 

defined under the physical or historical or observable probability measure. However, it 

was previously shown that for options pricing purposes, the underlying asset value 

process must be defined under the equivalent martingale measure also known as risk-

neutral measure: this is made to ensure that the terminal option payoff can be discounted 

at the risk-free rate. Therefore, the purpose of the second step of the analysis is to define 

this equivalent martingale measure and to express the dynamics of the business prospect 

under this synthetic probability measure. For some of the most popular stochastic 
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processes, the mathematical expression under the risk-neutral probability measure is 

known and a closed-form expression can be used. Generally speaking, it requires the 

removal of the risk premium from the drift of the underlying stochastic process.  

The numerical implementation is the third step of the analysis. Many simulations are run 

to generate different trajectories for the value of the business prospect. This step can be 

implemented in a Monte Carlo simulator as shown in Figure 16 to yield a sampling of the 

terminal value distribution. In the fourth and final step, the real option payoff is estimated 

for each and every trajectory generated during the simulations. This enables the 

estimation of the average payoff which is then discounted to the present time using the 

risk-free discount rate. 

 
Figure 16: Simulations and resulting business prospect value distributions at expiration under 

physical and risk-neutral probability measures 

Despite the computational flexibility offered by Monte Carlo valuation methods, 

few academic papers highlight their use and application for real options valuation. This is 

both surprising and in stark contrast to the financial industry where Monte Carlo methods 

have been embraced for valuing financial options [127]. Still, Rose [128] uses Monte 

Carlo simulations to value the option offered to a Government to take back ownership of 
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uncertain traffic volumes on toll roads and a mean reverting process to represent 

uncertain interest rate evolutions. Tseng and Barz [129] use Monte Carlo simulations of a 

mean-reverting process to value electricity generating power plants with operating 

constraints over short-term periods (such as start-up times, minimum up-times, and 

minimum down-times). More recently, Justin and Mavris [20] use simulations to capture 

the uncertain deterioration and possible failures of turbofan engine components in order 

to price maintenance guarantees embedded in some aircraft and engine purchase 

contracts. 

There are many advantages to the use of Monte Carlo simulations for real options 

valuation. The first advantage is that they allow the simulation of complex processes 

which would prove almost intractable with more conventional partial differential 

equations and lattice methods. This is particularly obvious for multi-dimensional real 

options when the underlying real assets are subject to several sources of uncertainties or 

when the real options derive their values from several underlying real assets. In these 

cases, it starts to get impractical to code, draw, and visualize lattices whenever the 

dimension exceeds two or three. For instance, Rodriguez [130] uses Monte Carlo 

simulations to value the flexibility offered by the ability to supply different markets with 

liquefied natural gas. Each of these markets has an uncertain prevailing price for the 

natural gas, and each is represented by a specific stochastic process.  

In addition, these dimensions may not be independent and some correlations may 

exist between them. A typical example would be price and sales volume: when demand is 

high, both price and volume increase while when demand is down, both price and volume 

decrease. Monte Carlo methods present a simple framework to capture these correlations 
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by generating correlated paths by way of Cholesky decompositions [131]. An example is 

Yang [132] who captures the correlation between gas and electricity prices while 

performing simulations to estimate the impact of uncertain future climate-change policies 

on power investments made by utility companies. Justin and Mavris [37] also use Monte 

Carlo simulations to model the uncertainties related to the two correlated quantities, jet-

fuel price and carbon emission permit prices. In turn, they use simulations of their 

trajectories to estimate the value of staggered research and development investments in 

more fuel-efficient technologies for commercial aircraft.  

Another advantage of Monte Carlo simulations is the ability to use more complex 

stochastic models and still implement them with relative ease. More complex models 

such as those featuring a mean-reverting behavior or those featuring jumps, have proven 

popular in recent years to improve over some of the deficiencies of pure diffusive 

processes. Mean-reverting processes have been proposed to model the price of some 

commodities [133] because the forced return towards a long-term mean is better suited to 

account for the demand and supply forces that act when prices get away from an 

equilibrium level. Besides, while analyzing stock returns, Fama [109] realized that many 

of them where exhibiting leptokurtic distributions with heavier tails than those predicted 

by pure diffusive processes. He introduced the idea that jumps may be responsible for 

those heavy tails representing large and sudden shocks. Later, Merton [134] proposed a 

revised framework for pricing options when jumps are present. Subsequently, Ait-Sahalia 

[135] proposed a methodology to disentangle diffusion and jumps. This enables the 

calibration of the diffusive and jump parts of stochastic processes. All in all, there is little 

doubt that a methodology that can handle these complex processes is superior, for it can 
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be used in more general settings. As a matter of fact, Monte Carlo inspired methodologies 

can easily simulate trajectories featuring mean-reverting behaviors and jumps, and can 

therefore be useful for real options valuation. 

Despite these advantages, simulation-based real options valuation has some issues 

related to the computational complexity. Indeed, even though the implementation is 

simple, a Monte Carlo approach requires the simulation of a huge number of trajectories 

(millions) to converge to the expectation value. In turn, this means that the computational 

cost is quite significant and that runtimes are not short. In addition, despite some recent 

breakthroughs thanks to Longstaff and Schwartz [136], pricing path-dependent options 

such as American-type real options or Bermudan-type real options remains challenging. 

Also, like the partial differential equation approach and the lattice approach, Monte Carlo 

methods require an explicit formulation of the dynamics of the underlying corporate 

investment process for two reasons. The first reason is to be able to express the stochastic 

process under the risk-neutral probability measure since the expectation is made using 

this equivalent martingale measure. If the process being used is well-know, then the 

adjustments needed to model it under the new risk-neutral probability measure are 

usually well-known (this is the case for the Geometric Brownian Motion, the mean-

reverting Brownian Motion, as well as the Geometric Brownian Motion with Poisson 

jumps). The second reason is that the explicit formulation of the process must be known 

to generate trajectories for the simulations. Consequently, the issues mentioned earlier 

regarding the estimation of parameters for the stochastic process modeling the underlying 

prospect value remain. These issues are particularly relevant when little historical data is 

available to perform a proper calibration.  
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4.2.2 Summary of methodologies for real options evaluation 

Table 20 summarizes the strengths and weaknesses of the different approaches to 

price options that have been introduced so far. This table includes the (rare) case when 

closed-form solutions exist (Black-Scholes formula for some European options, Geske 

formula for some compound options…), the partial differential equation approach, the 

lattices and trees approach, and finally the Monte Carlo simulations approach. The 

criteria retained to compare these methods account for their versatility (ability to handle 

many different problems), their mathematical and economic rigor (whether the model is 

mathematically and economically sound), their ability to capture the reality of the 

problem (whether the underlying assumptions are validated), and finally their ability to 

be implemented easily by practitioners within a company.  

Some of these criteria are stemming from the list of requirements set up during a 

real options symposium held at Georgetown University in 2003 (the Georgetown 

Challenge [106]) where academics and practitioners reached a consensus on what was 

necessary for real options methodologies to get traction within companies. Reviewing the 

information contained in Table 14 and being thoughtful of the application of the method, 

which is the valuation of flexibility for unique investments within the aerospace industry 

in an environment riddled with uncertainties leads to the following hypothesis: 

Hypothesis 1.1.1 – Monte Carlo methods for real options analyses 

Monte Carlo methods and lattice-based methods present the most promising approaches 

to solve for the arbitrage-free value of corporate investments featuring flexibility. Within 

the context of the aerospace industry, Monte Carlo methods offer the ability to integrate 

well with other probabilistic methods. 
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Table 20: Real options valuation methods, strengths and weaknesses 

 

Closed-

Form 

Solution 

Partial 

Differential 

Equation 

Approach 

Lattices and 

Trees 

Approach 

Monte Carlo 

Simulations 

Approach 

Intuitively dominates 

other decision-making 

methods     

Soundness of the 

method 

(mathematically and 

economically) 
    

Ease of implementation 

of the method by 

practitioners  
 

  

Ability to visualize 

uncertainties and the 

decision process 
  

  

Ability to capture a 

complex reality with 

intertwined 

uncertainties 

   
 

Ability to handle  

path-dependent real 

options 
 

   

Ability to handle 

corporate investments 

featuring exotic options 
    

This immediately leads to a research question regarding the usability of Monte 

Carlo methods for their intended use by practitioners within companies. 

Research Question 1.1.2 – Improving Monte Carlo methods for real options analyses 

Monte Carlo methods seem appropriate to value corporate investments featuring 

managerial flexibility and programmatic optionality. With usability by practitioners in 

mind, how can these methods be modified to alleviate the complexity of finding the 

proper equivalent probability measure required for the expectation computation while 

maintaining their rigor? 
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4.3 Probability measure and change of probability measure 

In the previous section, numerical methods using Monte Carlo simulations to 

value real options were introduced.  These methods always rely on the computation of a 

discounted expectation to price real options. The expectation is not computed using the 

observable historical probability measure but rather the equivalent martingale measure 

also known as risk-neutral probability measure.  What is a probability measure? A 

probability measure1 is a function defined on a set of events and returning real numbers 

in the unit interval, assigning zero for the empty set and one for the entire space. It also 

satisfies the property of countable additivity which means that for disjoint events, the 

probability measure of the union of these events is the sum of the probability measures of 

all the events. Informally, if A is an event within the sample space S and if the function N 

denotes a measure on that sample space S (for instance the number of occurrences of an 

event), then the commonly used probability measure is given by :B4E = 6{/6}.  Still, 

nothing in the definition of a probability measure relates to the observed likelihood of an 

event happening as we usually understand it. 

In fact, a probability measure is simply defined as a real function with some 

specific properties. Thus, a probability measure need not be unique and there may exist 

some other measures besides the usual probability measure (also known as natural, 

historical, or observable probability measure). If several probability measures exist, one 

may want to find out if these measures are related, and if so, how they are related. This 

                                                 

1 A probability measure ℙ on a sample space S is a real-valued function defined on the collection of events 
of a random experiment that satisfies the three properties: P(A) is non-negative for any event A in S, 
P(S)=1, and if 4� is a countable collection of pair-wise disjoint events, then :B⋃ 4��∈� E = ∑ :B4�E�∈�  
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leads to the introduction of equivalent probability measures1.  Probability measures are 

said to be equivalent if they agree on what is possible and what is impossible. Indeed, 

according to Schreve [137], the equivalent probability measures “must agree on what is 

possible and what is impossible; they may disagree on how probable the possibilities 

are.” For real options applications, two equivalent probability measures agree on which 

values for the business prospect are possible and which values are not. They differ 

however on their assessments of the likelihood of each possible value happening. 

Therefore, the remaining question is how to go from one probability measure ℙ to 

another probability measure ℚ. Better said, how to model the evolution of a stochastic 

process in a new synthetic probability measure ℚ once it has been calibrated under the 

historical probability measure ℙ using historical data? This is done using the Radon-

Nikodym derivative for equivalent probability measures also known as the likelihood 

ratio. The likelihood ratio terminology is easier to understand since it represents the ratio 

of the likelihood of an event in one probability measure ℙ over the likelihood of the same 

event in the other probability measure ℚ. It is often defined as expressed in Eq. 9, 

where � is the density of the probability measure ℚ with respect to the measure ℙ.  

� = 3ℚ3ℙ  �(�ℎ �ℎ- 1�91-��P �ℎ)� ��B�E = 1 Eq. 9 

Real options are however dealing with continuous-time processes instead of finite 

sequence of random variables. Indeed, it is the continuous evolution of the underlying 

business prospect value that drives the value of the real option. When dealing with these 

processes, a further extension of the Radon-Nikodym derivative is necessary. The change 

                                                 

1 Two probability measures ℙ and ℚ on a sample space S are equivalent if for all events A in S the 
following is true: :B4E = 0 ⟺ �B4E = 0 
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in the dynamics of stochastic processes when probability measures are distorted is 

described by the Cameron-Martin-Girsanov theorem. For a brief introduction on the 

mathematics of probability measure, equivalent probability measure, and change of 

measure in continuous-time, the reader is referred to APPENDIX C:  while more 

thorough texts can be found in Shreve [137], Shreve [138], and Neftci [139]. 

4.3.1 Risk-neutral measure for some common stochastic processes 

In the previous section, the mechanics underpinning the change of probability 

measure required for real options valuation was introduced. Indeed, in order to use 

simulations to value a business prospect, the dynamics of the underlying investments 

must be specified in the risk-neutral measure. Simply said, the risk-neutral measure is a 

probability measure for which the returns of all assets are exactly the risk-free rate of 

return. Mathematically, this is equivalent to subtracting the risk-premium from the 

expected returns which makes investors indifferent towards risk, hence the name of the 

measure. In this section, the techniques introduced above will be used to derive the 

expression for the dynamics of some common stochastic processes which can then be 

used directly in Monte Carlo simulators. The derivations are again presented in 

APPENDIX C:  and only the results are presented in Table 21. 

The Cameron-Martin-Girsanov theorem is helpful to perform changes of 

measures and to express the continuous evolution of stochastic processes under different 

measures. However, one of the main advantages of Monte Carlo simulations for real 

options evaluation is their ability to cope with discontinuous processes. In this regards, 

how can the change of measure be performed when the underlying process is 

discontinuous and features jumps? 
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Table 21: Changing the measure of popular stochastic processes for real options 

Stochastic 

Process 

Stochastic Differential Equation using  

Historical Probability Measure 
Comments 

Stochastic Differential Equation using 

Risk-Neutral Probability Measure 

Arithmetic 

Brownian 

Motion 

3�� = !3� + "3�� Radon-Nikodym derivative 

given by: �� = -���������� �X����� �� 3�� = ��3� + "3��ℚ 

Geometric 

Brownian 

Motion 

3�� = !��3� + "��3�� Radon-Nikodym derivative 

given by: �� = -���������� �X����� �� 3�� = ����3� + "��3��ℚ 

Jump 

Diffusion 

Process 

(Merton) 

3�� = !��3� + "��3�� + B�� − 1E��36� Jump model with Poisson 

counting process of intensity � 

for occurrence of jumps which 

are of  J-1 distributed amplitude 
3�� = B� − ��B�� − 1EE3� + "��3��ℚ+ B�� − 1E��36� 

Mean-

Reverting 

Process 

(Ornstein-

Uhlenbeck) 

3�� =  B�̅ − ��E3� + "3�� 
Mean-reverting model with 

adjustment speed   and long-

term average �� . Risk-neutral 

model uses the market price of 

risk � 
3�� =  ��̅ − "� − ��� 3� + "3��ℚ 

 

4.3.2 Esscher transform for option pricing 

An extension of the change of measure technique was proposed in 1994 by 

Gerber and Shiu [140] to handle a wider variety of processes featuring stationary and 

independent increments such as Wiener processes, Poisson processes, Gamma processes, 

and inverse Gaussian processes. Similarly to the previous technique, a transformation is 

used to induce an equivalent probability measure. The transformation is based on the 

Esscher transform [141], a time-honored tool in actuarial finance pioneered by Swedish 
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mathematician Fredrik Esscher and later publicized by Kahn [142]. For a probability 

density function f and a real number h, the Esscher transform ���� with parameter h is 

expressed using the moment generating function of f as shown in Eq. 10: 

����B0, ℎE = -���B0E�BℎE ,   �(�ℎ ℎ ∈ ℝ )'3 �BℎE =  � -���B0E30�
=�  Eq. 10 

Looking at this definition, the Esscher transform is the product of an exponential 

function and a density function, normalized by a moment generating function. As a result, 

this transformation induces an equivalent probability measure as both distributions agree 

on sets with probability zero. It also becomes clear why the Esscher transform is 

sometimes called exponential tilting: the transformation distorts the original probability 

measure using an exponential function. The goal of this technique is to use the free 

parameter h introduced by the Esscher transform to ensure that the new probability 

measure is an equivalent martingale measure. Consequently, the parameter h is 

determined to ensure that the discounted underlying asset price is a martingale or, better 

said, that the price of the underlying asset is exactly its expected discounted payout. 

A sketch of the derivation of the Esscher transform for option pricing is found in 

APPENDIX D:  but the main steps are presented in the following paragraphs. In the first 

step, the Esscher transform that was defined for a single random variable is modified for 

the purpose of option valuation by adapting it to stochastic processes and indexing it with 

the time parameter t. This leads to a new definition of the Esscher transform for 

stochastic processes given in Eq. 11. This new Esscher transform leads to a new 

stochastic process. The moment generating function associated with this new probability 

distribution is given in Eq. 12: 
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����B0, �, ℎE = -���B0, �E�Bℎ, �E ,   �(�ℎ ℎ ∈ ℝ )'3 �Bℎ, �E =  � -���B0, �E30�
=�  

�B�, �; ℎE =  � -������B0, �, ℎE30 = �B� + ℎ, �E�Bℎ, �E�
=�  

Eq. 11 

 

Eq. 12 

The next step consists in solving for the parameter h that makes the transformed 

distribution a risk-neutral measure. This parameter, noted h*, is unique and solves the 

expectation shown in Eq. 13: �A = ����� s-=����B�Et Eq. 13 

Assuming now that the process describing the behavior of the underlying asset 

can be written as �B�E = �A ∙ -�B�E with X(t) a stochastic process with stationary and 

independent increments starting at zero, then a simplification of the previous equation 

leads to 1 = ����� s-�B�Et = �B1, �; ℎ∗E which, in turn, yields Eq. 14. This defines the 

risk-neutral Esscher transform of parameter h* and the corresponding measure is the risk-

neutral Esscher measure. �� = *'s�B1,1; ℎ∗Et Eq. 14 

To summarize, the original stochastic process has been distorted to yield a new 

stochastic process. To compute the value of the real option, it now suffices to first 

simulate the dynamics of the underlying asset under this new risk-neutral Esscher 

measure, then to estimate the expectation of the payoffs under this new measure, and 

finally to discount back these payoffs to the present time using the risk-free discount 

factor. 

The Esscher transform is a powerful technique that has been applied to various 

pricing problems in finance. It presents the advantage of being both a rather 

straightforward and versatile technique being able to handle many different types of 
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processes, including some of the most commonly used stochastic processes in finance 

such as diffusion processes and diffusion processes with jumps. Gerber and Shiu 

demonstrate that the classical results of Black-Scholes [66] and Merton [67] for a Wiener 

process, Cox and Ross [92] for a shifted Poisson process and finally Cox, Ross, and 

Rubinstein [99] for the binomial model can be reproduced with this approach. 

When markets are complete, the equivalent martingale measure is unique and 

therefore the risk-neutral Esscher transform gives the unique arbitrage-free price for the 

real option. The Marketed Asset Disclaimer (MAD) assumption presented earlier in this 

thesis ensures that the market is complete and therefore that a unique price for the real 

option can be found. On the other hand, when the market is incomplete, the claim is not 

attainable and there is no possibility for the market and its arbitrageurs to enforce a no-

arbitrage price. Mathematically, there may be many equivalent martingale measures and 

the practitioner has to select one of them. Several equivalent measures [143] have been 

proposed such as the minimal martingale measure [144], the minimal entropy martingale 

measure [145], the utility martingale measure [145], and of course, the Esscher 

martingale measure. Each of them corresponds to a different attitude towards risk. As a 

result, some assumptions regarding the preferences and risk attitude of decision-makers 

must be set to pick which utility function and therefore which equivalent martingale 

measure is most appropriate.  

In fact, in the discussion pertaining to their paper [140], Gerber and Shiu show 

that the Esscher martingale measure is consistent with investors or decision-makers 
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exhibiting power utility behaviors1. Power utility functions, also known as isoelastic 

utility functions, have the property of Constant Relative Risk Aversion (CRRA) which 

means that the risk aversion is independent of the level of initial wealth. The reader is 

referred to APPENDIX D: where the relationship between the measure of risk aversion   

and the Esscher parameter h* is derived. The power utility assumption also has the 

advantage of being consistent with some other fundamental results of finance and 

economics (such as the mutual fund theorem in Cass and Stiglitz [146] and Stiglitz [147] 

for instance). 

Over the years, several improvements pioneered by Gerber and Shiu have been 

made to the change of measure by means of Esscher transform. Buhlmann et al. [148] use 

conditional Esscher transforms to construct equivalent martingale measures for classes of 

semi-martingales. Inspired by the work of Duan [149] on locally risk-neutral valuation 

relationships, Siu, Tong, and Yang [150] also use the conditional Esscher transform to 

price options with an underlying following the popular Generalized AutoRegressive 

Conditional Heteroscedasticity (GARCH) model [112]. Following-up on their acclaimed 

work, Gerber and Shiu [151] use the Esscher transform and the optional sampling 

theorem [152] to derive the price of perpetual American options. More recently, 

Goovaerts and Leaven [153] use an axiomatic characterization to define a pricing 

mechanism that can generate approximate arbitrage-free derivative prices and use a 

                                                 

1 A power utility function belongs to the class of hyperbolic absolute risk aversion utility functions. It is a 
special case in that it exhibits a constant relative risk aversion. The power utility function relates the utility 

U to the level of consumption c using the following formula with   a constant measuring risk-aversion: �B2E = �J�� =YY=¡  > 0,  ≠ 1lnB2E  = 1 ¦ 



www.manaraa.com

123 

probability measure transformation closely related to the Esscher transform called the 

Esscher-Girsanov transform. 

Despite their many advantages, Esscher-based valuation techniques still require 

the explicit formulation of a model describing the dynamics of the underlying asset value 

which may be an issue for real options valuation purposes. Indeed, unlike financial 

options for which the underlying asset price is readily available and for which historical 

price data is available, real options models cannot usually rely on large datasets to both 

assume a particular type of behavior and then calibrate the parameters of the assumed 

stochastic process. This may lead to two different kinds of errors for the real options 

practitioner: model misspecification if the functional form of the model is wrong and 

model calibration error if the estimation of parameters is skewed.  

Surprisingly, the Esscher transformation has never been used for real options 

analysis to the author’s knowledge. This may be due to the lack of exposure of 

practitioners to the technique or to the modeling issue mentioned above. Still, this 

technique seems promising enough to warrant further research to adapt it for corporate 

investment analyses. 

Research Question 1.1.3 – Adaptation of Esscher transform for pricing real options 

How can option pricing by means of Esscher transform be adapted to a corporate 

investment analysis within the context of a real options methodology? 

4.3.3 Non-parametric Esscher transform and real options pricing 

In the previous paragraph, the Esscher transform was introduced as a powerful 

and efficient tool to price options in both a complete (no arbitrage pricing leads to a 

single equivalent martingale measure) and incomplete markets (the probability measure 
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induced by the Esscher transformation is consistent with a representative agent featuring 

a power utility function) when the underlying asset has some nice properties (stationary 

and independent increments). This is a promising framework for real options analysis as 

most real options cannot be hedged by a replicating portfolio traded on the markets. 

Adapting the Esscher transformation technique so that it does not require the 

explicit formulation of the underlying stochastic process would prove particularly useful 

for real options analysis. Indeed, for many real options analyses, the main source of 

uncertainty is not the cash flow itself but rather the multitude of uncertainties affecting 

the cash flow. In the context of technology developments for aerospace applications, the 

source of market uncertainty driving the value of technologies is usually the price of 

commodities such as the price of jet fuel or the price of carbon permits. Of course, this 

uncertainty propagates downstream and affects the operating costs and therefore the 

value and attractiveness of fuel-saving technology developments. While some classes of 

stochastic processes are suitable to model these uncertainties and ample historical data is 

available to calibrate these models, assuming and using stochastic processes to directly 

model the cash flows is more difficult to substantiate because the lack of historical data 

prevents a proper estimation of the model parameters. Of course, it is possible to back-

engineer a cash flow model by first modeling the driving uncertainties to generate 

estimates of cash flows which can then be used to assume a cash flow model. This 

circuitous approach adds however another step and another layer of assumptions that may 

neither be necessary nor desirable. 

Fortunately, a paper presented at a conference in Southern France by Pereira, 

Epprecht, and Veiga [154] proposed a non-parametric method that inspired this research 
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endeavor. The method is an extension of the Esscher transform presented earlier and uses 

a non-parametric, model-free, Esscher transform to simulate the behavior of the 

underlying asset from the physical probability measure to the risk-neutral probability 

measure. The technique is geared towards the pricing of financial options and therefore 

will need to be adapted for the economic evaluation of corporate investments featuring 

flexibility. Detailed derivations of this non-parametric technique may be found in the last 

section of APPENDIX D:  devoted to the Esscher transform. Still, the main steps are 

presented in the following paragraphs for the sake of completeness. 

The first step of the analysis starts with the collection of the data (and eventually 

its reduction if required) regarding the price of the underlying asset �� . This data may 

have either one of two origins: it can be directly observable and available (such as the 

market price of the underlying asset) or it can be generated by the practitioner if the 

underlying asset is synthetic or not publicly traded. These prices are used to estimate the 

continuously compounded rate of return  0� at time t. In the first case, there is only one 

rate of return at each time-increment: indeed, there is a single price observation since 

there is a single realization of the uncertainty during that time increment. A bootstrapping 

technique is therefore used to generate many possible realizations at each step. This 

enables an approximation of the unknown distribution of rate of returns at each time t. In 

the second case, the prices are generated by the practitioner using one or more stochastic 

processes. A Monte Carlo simulation is therefore sufficient to generate a distribution of 

returns for each time step. As shown in Eq. 15, let’s now call p�§ the vector of size n 

containing these n rates of return sampled from the unknown probability distribution at 

time t. 
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p�§ = b0�Y, 0�R, 0�̈ … 0�?c = ª*' Z ��Y��=YY [ , *' Z ��R��=YR [ , *' Z ��̈��=Y¨ [ …  *' Z ��?��=Y? [« Eq. 15 

The second step of the analysis consists in the computation of the moment 

generating function which is estimated using its empirical counterpart, the empirical 

moment generating function given in Eq. 16: 

��§ Bℎ, �E = 1' ; -���>?
�@Y  Eq. 16 

The third step of the analysis is directly inspired by the work of Gerber and Shiu 

in that it solves for the specific value of the parameter h such that the asset price is a 

martingale under the new, to be constructed, probability measure induced by the Esscher 

transform. The parameter h* must solve Eq. 17 and, in a complete market with no 

arbitrage, the fundamental theorem of asset pricing [102] ensures that this solution is 

unique. 

-�� = ∑ -B�∗XYE��>?�@Y∑ -�∗��>?�@Y  Eq. 17 

With the proper value h* of the Esscher transform parameter, the final step 

consists in constructing the new probability measure. This is done by reweighting each of 

the observation and ensuring that these probabilities sum to one. The risk-neutral 

probability vector providing the probability of each observation is given by Eq. 18. This 

is the set of probabilities that is used for the pricing of options and for the computation of 

expectations. 

ℚ��∗ = U -�∗���∑ -�∗��>?�@Y  , -�∗���∑ -�∗��>?�@Y  … -�∗��g∑ -�∗��>?�@Y     V Eq. 18 
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In summary, the non-parametric Esscher transform enables practitioners to distort 

an unknown probability measure into a risk-neutral probability measure. This 

transformation is done on a sample of representative observations or a sample of 

simulated observations for option pricing purposes and leads to a new sample. Next, this 

new sample is used for the estimation of the option payoffs which are then discounted 

back to the present time using the risk-free interest rate to estimate the option value. The 

algorithm of the non-parametric Esscher transform is depicted in Figure 17. 

 

Figure 17: Non-parametric Esscher transform for change of probability measure 

 

All in all, this technique tremendously simplifies the analyses of practitioners who 

no longer need to estimate, calibrate, and substantiate the choice of one particular 

stochastic process for the underlying asset, provided some mild conditions of stationary 

and independent increments are satisfied.  This leads to the following research hypothesis 

regarding the change of probability measure. 
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Hypothesis 1.1.2 – Non parametric Esscher transform for pricing real options 

Real options valuation via non-parametric Esscher transforms is a promising framework 

for staggered investment analyses. It is based on rigorous foundations, offers a clear and 

transparent methodology for practitioners, and uses probabilistic techniques widely 

accepted within companies.    

4.4 Path-dependent options 

So far, most of the discussion has revolved around enabling methods for option 

analysis. However, little has been said about the type of options that can be useful for real 

options analyses. The most widely studied options are European options which give the 

option holder the right but not the obligation to undertake an investment at one pre-

specified point in time. These options are so common that they are referred to as “plain 

vanilla options” and are usually simpler to analyze. Let’s pause momentarily and 

remember that one goal of real options analyses is to leverage the upside potential created 

by the identification of precursors of successful program developments. European types 

of options with set exercise dates may not be the most appropriate type to use. In fact, 

two other types of options may be more useful for corporate investment applications: 

American options and Bermudan options.  

4.4.1 Managerial flexibility and trigger events 

Indeed, managerial flexibility represents the opportunities offered to management 

to react in real-time to the unfolding of an uncertain future. In this context, decision-

makers can exercise their managing privileges to alter substantially the course of 

development programs. In particular, following the detection of trigger events 
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announcing an unfavorable future, managers may decide to shrink, delay, or abandon 

investments. Following the detection of trigger events announcing a favorable future, 

managers may decide to expand or rush an investment. How can real options analyses be 

framed to handle these real-time decisions? This leads to the following research question. 

 

Research Question 1.2 – Managerial flexibility and timing of investments 

How can the flexibility offered to management to optimally time the launch of new 

investments be accounted for in a real options framework?  

4.4.2 American and Bermudan real options 

An American option gives the holder the right but not the obligation to undertake 

an investment at any time prior to a pre-specified deadline. This is strikingly in line with 

the decision-makers ability to undertake an investment whenever they feel the market is 

ready and the conditions are optimal. A Bermudan option is similar to an American 

option but exercising the option can only be done at several pre-specified dates up to the 

expiration of the option. In the context of pricing options via simulations, the time-

discretization introduced for the generation of trajectories basically transforms any 

continuous-time American option into a Bermudan option with exercise possibilities at 

each time-step. In the following sections, the algorithms presented for the pricing of 

American options are in fact pricing Bermudan options with as many possible exercise 

dates as there are time-steps in the simulation. As the number of time-steps in the 

simulation grows, the Bermudan option tends to be more and more similar to an 

American option and its price converges to the price of its American counterpart. 
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The striking similarity between American and Bermudan types of derivative 

contracts and the flexibility offered to management and decision-makers to invest 

whenever conditions become optimal lead to the following assertion: practitioners could 

leverage some of the techniques developed for the evaluation of path-dependent options 

to analyze corporate investments featuring flexibility.  

Hypothesis 1.1 – Path-dependent options to model managerial flexibility 

As uncertainty unfolds, programmatic, technological, and market opportunities emerge 

and disappear. Flexible management and flexible timing of investment decisions allow 

the maximization of the upside potential of these opportunities. Path-dependant options 

such as American options present a means to model the flexibility offered to management 

in timing these investment decisions.    

4.4.3 Early-exercise boundary 

American options and their Bermudan approximations are special in that these 

contracts can be exercised at almost any time prior to the expiration of the options. 

Quoting Glasserman [131], “the value of an American option is the value achieved by 

exercising optimally.” In fact, if this was not the case, arbitrageurs would actually kick-in 

and enforce a price that is in agreement with an optimally enforced option. Valuing this 

type of option is therefore equivalent to finding the optimal exercise rule and then 

computing the expected discounted payoff using this rule to decide whether the option is 

exercised early or not. Defining the optimal exercise rule is however not a trivial affair. 

The optimal exercise rule is a function of several parameters and can be interpreted as a 

multi-dimensional surface. Heuristically, it has to be a function of the current asset price 

and the remaining time before expiration of the option. On the one hand, if the current 
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price of the underlying asset takes extreme values, it might become profitable to exercise 

early in-the-money options so as to pocket the payoff with certainty. On the other hand, if 

a significant amount of time remains before expiration, it might not be worth exercising 

early an option that is barely in-the-money as better opportunities might arise later. Two 

extra parameters enter into the equation for defining the early-exercise boundary. The 

first one is the risk-free interest rate which indicates how the option payoff will earn 

interest after early-exercise. The second one is the underlying asset volatility which 

indicates how likely the underlying asset is to move significantly in the future.  

Up to this point, the early-exercise boundary is defined as a function of at least 

four variables: current price, time to expiration, risk-free interest rate, and underlying 

volatility. A notional early-exercise boundary is given in exhibit (a) of Figure 18 for an 

American put option. As the American option gets more complex, some new parameters 

may nonetheless affect the shape of the early-exercise boundary. Let’s assume for 

instance that the underlying asset is paying a dividend. On the ex-dividend date, the 

holder of the stock will reap a positive benefit while the holder of the option will 

experience a downward pressure on the underlying price. This must affect the early-

exercise boundary as an astute investor will ensure not to exercise an American put 

option right before the ex-dividend date in order to collect the extra benefit. This is 

shown in exhibit (b) of Figure 18 which displays the early-exercise boundary of an 

American put option on a stock with one dividend payment: the early-exercise boundary 

disappear suddenly before the ex-dividend date. 
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Figure 18: Early-exercise boundaries for American put options 

 

For a real options application, modeling dividend may seem useless at first sight: 

after all, a real development program usually does not pay any dividend to the company. 

This is obviously true, but dividend-like payments may be useful to model some other 

aspects that are very relevant in corporate finance. This is for instance the case for 

modeling the cost of delay or the entrance of a new competitor in the market which both 

reduce the expected value of the development program. 

Now, the main question remains: how can one approximate the early-exercise 

boundary which corresponds to the optimal investment boundary for real options and 

corporate investments? This leads to the following research question: 
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Research Question 1.2.1 – Early-investment boundaries to detect trigger events 

How can early-investment boundaries be identified and how can they be used for the 

identification of precursors of successful development programs? 

4.4.4 Monte Carlo simulations for pricing American options 

Previously, Monte Carlo simulations were introduced as a clear and transparent 

technique for pricing options. For real options applications, Monte Carlo simulations are 

even more useful as they enable the capture of a multitude of uncertainties and their 

interdependencies. However, pricing real options using Monte Carlo simulations has long 

been hindered by its perceived inability to correctly handle path-dependant options. 

Indeed, in 1993, Hull writes in the second edition of his book [155] that “Monte Carlo 

simulation can only be used for European-style options.” 

The main reason for this difficulty is that simulations will yield an estimate of the 

option value at a single point defined by the current time and the current asset price. The 

Monte Carlo simulations technique does not yield information regarding the option value 

at future times and for different asset prices which is problematic. How then to ensure 

that the early-exercise policy is not violated? In other words, when moving along a 

simulated trajectory, one needs to ensure that the optimal early-exercise policy is 

followed. This means that, while marching forward in time, one has to compare the value 

of holding the option for at least one extra step to the payoff earned by an immediate 

exercise. Mathematically, the value of the American option at the kth time-step �� denoted ��� on an asset S with observed value ��� and with payoff function P can be expressed as 

the maximum between exercising immediately and holding the option as shown in Eq. 

19. The issue is that there is yet no estimate of the present value of the one-period-ahead 
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option value ���¬�. One could imagine computing this value by performing a nested 

simulation (simulation within the simulation) but these nested simulations lead to an 

exponential number of computations which is not a feasible solution. ��� = /)0S:s���t,  -=��B��¬�=��E�ℚs���¬�|���tT Eq. 19 

Fortunately, this paradigm has evolved starting in 1993 with the paper of Tilley 

[156] which aim was to dispel the belief that American-style options could not be valued 

using simulations. Tilley proposed an algorithm where the holding value is determined by 

first partitioning the price distribution at each time-step and bundling together prices (and 

associated trajectories) that are similar. In the following step, the bundles are used to 

estimate the expected one-period-ahead option value by using the trajectories belonging 

to the asset price realizations contained in the bundles. In other words, a bundling of 

similar prices is performed at each time-step to compute a conditional expectation by 

pretending that the corresponding trajectories constitute a new sampling of the underlying 

asset price trajectories. Despite providing reasonable results, this algorithm lacks 

justification regarding why it works and how the bundling shall be performed (what 

choice of criteria for identifying similar prices). 

4.4.5 Pricing American options using Longstaff-Schwartz algorithm 

A significant improvement came in 1996 with the work of Carriere [157] 

regarding the valuation of options with early-exercise properties. Faced with the same 

problem of estimating the one-period-ahead option value for subsequent comparison with 

the immediate exercise payoff, Carriere suggests the use of non-parametric regressions to 

regress the conditional expectation and therefore to estimate the value of holding the 
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option. As noted by Stentoft [158], the reason for this regression is that a conditional 

expectation is a function and “any function belonging to a separable Hilbert space may 

be represented as a countable linear combination of basis-functions for the space.” 

Consequently, let’s introduce #�®Y� as a family of basis-functions for that space. The 

expectation may be rewritten and approximated using the first M basis-functions #�®�@Y�  

as shown in Eq. 20: 

�ℚs���¬�|���t = ; ¯�B��E ∙ #�s���t�
�@Y ~ ; ¯�B��E ∙ #�s���t�

�@Y  Eq. 20 

Any family of basis-functions should work, but Carriere suggests using either 

splines or a polynomial smoother. The next task consists in estimating the coefficients ¯� 
of the linear combination. This is done by marching backward, starting at expiration and 

moving back time-step by time-step until the present time. At expiration, the value of the 

option is exactly the payoff. For all preceding time-steps, denoted ��, a regression is 

performed using the observations of the asset price for the N simulated trajectories at that 

time ��, denoted by ���, as well as the option value ���¬�  at the following time-step ��XY. 

The regression objective is to select a family of coefficients ¯�®Y� that minimizes the 

error between the regressed conditional expectations and the option value across all 

simulated trajectories. This error is defined in Eq. 21: 

min³>®�́ ; µ; ¯�B��E ∙ #�s���? t − ���¬�?�
�@Y ¶·

?@Y
R
 Eq. 21 

The immediate exercise value at time ��, denoted :s���t, is then compared to the 

discounted regressed conditional expectation to find the option value, defined by Eq. 22. 
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The procedure is repeated for each time step and for each trajectory until the present time 

to find the value of the American option. 

��� = /)0 U:s���t,  -=��B��¬�=��E ; ¯�B��E ∙ #�s���t�
�@Y V Eq. 22 

 

The algorithm for American option valuation through regression is depicted in 

Figure 19. Another popular enhancement to this work is the Least-Squares Monte Carlo 

approach of Longstaff and Schwartz. Dating back to 2001, this approach is very similar 

to the method of Carriere except for two facts: the algorithm uses a least-squares 

regression and the regression is made using only in-the-money paths.  

 
Figure 19: American option valuation with regression 
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regress the conditional expectation �ℚs���¬�|���t against a set of explanatory variables. 

The set of explanatory variables is a family of basis-function #�®Y� valued using the 

conditioning underlying asset price ���. The families of basis-functions proposed by 
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Longstaff and Schwartz include the simplest possible monomial family  ¹#�: p →p�=Y®�@Y�  as well as the family of weighted Laguerre polynomials defined as: »#�: p →
-=�/R ∙ K¼�! ∙ H>H�> sp�-=�t¾�@Y�

 Other types of basis-functions that could be used include the 

Hermite, Legendre, and Chebyshev polynomials. As in Carriere’s method, only the first 

M basis-functions are used to perform the conditional expectation calculation. 

Besides, the regression is reduced by using only paths that are in-the-money since the 

decision to exercise or not the option is only relevant whenever the option is in-the-

money. According to Longstaff and Schwartz, “by focusing on the in-the-money paths, 

[… they…] limit the region over which the conditional expectation must be estimated, 

and far fewer basis functions are needed to obtain an accurate approximation to the 

conditional expectation function.” All in all, this significantly improves the efficiency of 

the algorithm as the dimensionality of the regressions is reduced and the regressions must 

be estimated many times over the course of the simulations. 

Another subtle difference with the works of Carriere is the choice of realized 

payoffs as dependent variables for the regression instead of using previously computed 

conditional expectations. These realized payoffs may be resulting from an early-exercise 

at the subsequent time-step ��XY or from an early-exercise several steps down the 

trajectory, for instance at ��X¿  with j greater than one. According to Longstaff and 

Schwartz, this precludes “an upward bias in the value of the option”. In other words, the 

conditional expectation at time �� denoted by �ℚs���¬�|���t is used only once in the 

entire algorithm: to check whether the value of holding the option is greater than the 

value of immediate exercise. For all other purposes, such as the estimation of the option 
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value at time �� denoted as ���, or the regression of the conditional expectation at time ��=Y denoted by �ℚs���|�����t, the conditional expectation at time �� is not used. This 

leads to the following exercise rule and option value in Eq. 23. Let’s notice the subtle 

difference with Eq. 22 in what the option value really is (the exercise rule remains the 

same). 

��� =
ÀÁÂ
ÁÃ :s���t , (� :s���t ≥   -=��B��¬�=��E ; ¯�B��E ∙ #�s���t�

�@Y  
 -=��B��¬�=��E ∙ ���¬� , (� :s���t <   -=��B��¬�=��E ; ¯�B��E ∙ #�s���t�

�@Y
¦ Eq. 23 

With the least-squares Monte Carlo approach used to approximate the early-

investment boundary, one question remains: how can these regressions be made when 

observations, both explanatory and dependent variables, are weighted? This leads to the 

following research question: 

Research Question 1.2.2 – Approximation of early-investment boundaries 

How can algorithms approximating the early-investment boundaries be used in 

conjunction with the non-parametric Esscher risk-neutralization? 

4.4.6 Bootstrapping for American and Bermudan options 

This section might be slightly misleading as the bootstrap technique is not used 

per se to value options. However, it was deliberately put at this place because it details an 

enabling technique to value American and Bermudan options. In this section, three 

possible alternatives are reviewed and some emphasis is given on a re-sampling 

technique also known as bootstrapping.  
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The non-parametric Esscher transform was previously presented as an efficient 

method to perform a change of measure and find the equivalent risk-neutral measure. By 

doing so, the technique is changing the mean of the terminal distribution of the 

underlying asset return by reweighting the different outcomes simulated. This procedure 

is however acting only on the terminal distribution of the underlying asset price. What 

about the price distributions for intermediate steps? As much as the procedure is 

sufficient for valuing European types of options whose values depend only on the 

distribution of the underlying asset prices at expiration, valuing an American or a 

Bermudan option requires the knowledge of the underlying asset price distribution at 

each and every intermediate steps under the risk-neutral measure ℚ in order to perform 

the conditional expectation regressions of the Longstaff-Schwartz algorithm. 

Having identified this issue, there are at least three natural ways to proceed forward:      

1) perform the risk-neutralization for the underlying asset distribution at each time-step 

independently, resulting in a time-indexed vector of Esscher transform parameters;         

2) perform the risk neutralization across all time-steps concurrently and optimize to find a 

single Esscher transform parameter that would reasonably work for each time-step; or    

3) use a re-sampling technique to generate new underlying asset trajectories using the 

risk-neutralized terminal distribution.  

• Independent risk-neutralization at each time step: 

This first technique consists in taking a cross-section of the simulated trajectories 

at each time-step and then performing the Esscher transformation for each of 

these cross-sections. This would yield a risk-neutralized distribution at each time-

step, each using a different Esscher parameter. Despite being appealing for its 
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simplicity, this solution would not work well in conjunction with the least-squares 

Monte-Carlo method of Longstaff and Schwartz. Indeed, the non-parametric 

Esscher transform tilts the distribution by assigning a set of weights for each 

observation in the simulation. Therefore, risk-neutralizing at each time-step would 

yield different sets of weights for each cross-section of the trajectories. As a 

result, realizations along a single asset price trajectory in the simulation would 

carry different weights at different times. How then to perform the conditional 

expectation regression if the explanatory variables and the dependent variables do 

not have the same weight? 

• Concurrent risk-neutralization for all time steps: 

The second technique is a bit more appealing since the concurrent risk-

neutralization would ensure that a single Esscher parameter is used and therefore 

a single set of weights is used to reweigh distributions for all cross-sections of the 

asset price trajectories. As a result, entire trajectories are reweighted at once. This 

method works better with the Longstaff-Schwartz algorithm since explanatory 

variables and dependent variables have the same weights. The least-squares 

regression simply needs to be adjusted to account for the weights associated with 

each trajectory. The problem with this approach is that the search for the single 

Esscher parameter that would risk-neutralize many distributions is over-

constrained. Indeed, this is equivalent to searching for a single parameter to solve 

several equations. At the very best, an optimization algorithm may be able to find 

a solution that yields approximate risk-neutralization at some time-steps; more 

likely the optimization algorithm will simply fail. 
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• Re-sampling: 

The third technique is probably the most promising as it uses the risk-neutralized 

terminal distribution to generate new trajectories that will be risk-neutralized by 

construction. This technique is quite popular in statistics and finance where it is 

usually called bootstrapping. Bootstrapping is a statistical method used for 

estimating the precision of a sample statistics by drawing randomly with 

replacement from a set of data points. In other words, it creates new distributions 

from observed distributions by sampling with replacement directly from the set of 

observed distributions.  

Bootstrapping is a term first coined by Efron in his 1979 Rietz Lecture [159] to 

describe a re-sampling technique used to estimate the properties of some statistics such as 

the mean, median, or standard deviation of a distribution. In these cases, bootstrap 

samples are constructed by sampling with replacement a subset of the original 

distribution. The statistics of interest is then computed for each bootstrap sample and the 

variability between the results (standard error) can be analyzed to derive some confidence 

intervals for the statistics. For the problem under investigation, the essence of the 

bootstrap method is retained but the application is totally different. Similarly to the 

original application, the bootstrap method is used to sample with replacement from an 

original distribution but what is new is that the bootstrap sample is then used to generate 

asset price trajectories. In other words, the distribution of asset prices under the historical 

probability measure ℙ is first risk-neutralized using the non-parametric Esscher transform 

yielding a new re-weighted probability distribution. In turn, this risk-neutral distribution 

under probability measure ℚ is sampled with replacement to yield bootstrap subsamples 
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which are used directly to construct trajectories under the risk-neutral probability 

measure ℚ. These trajectories will all carry the exact same weight and therefore the 

Longstaff-Schwartz least-squares Monte Carlo method can be applied. The method is 

illustrated in Figure 20. 

 

Figure 20: Bootstrap method to generate trajectories 

 

For the pricing of options, special attention needs to be paid as to when it is 

appropriate to use a bootstrapping technique. Indeed, instead of simply generating 

distributions, the bootstrapping technique will be applied to simulate the realization of a 

stochastic process. In fact, bootstrapping will no longer generate simple distributions but 

rather trajectories or time-indexed distributions. If the original process to be simulated 

has some serial correlation properties, these would need to be accounted for in the 

bootstrapping method since a naïve bootstrapping does not induce any serial correlation. 

In order not to complicate matter further, the simplifying assumption of lack of serial 

correlation will be imposed, at least initially.  

Provided that no serial correlation exists, another update to the method is required 

for the purpose of risk-neutral trajectory generation. Indeed, the bootstrapping method 
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usually starts with a sample of observations for which each individual observation carries 

a similar weight. In other words, there is a uniform distribution of each observation used 

as the original distribution. However, for the purpose of valuing options, the observations 

have already been reweighted during the risk-neutralization process using the non-

parametric Esscher transform. As a result, the individual weights associated with each 

observation have to be accounted for when re-sampling to ensure that the risk-neutral 

property is preserved and carried over to the trajectories to be generated. 

4.4.7 Summary 

In summary, the bootstrap technique enables practitioners to re-sample a non-

parametric risk-neutralized distribution for the purpose of generating trajectories for the 

underlying asset price. The risk-neutral property of the original distribution will be 

carried over to the sample of trajectories thus constructed. This transparent and intuitive 

method enables the use of the least-squares Monte Carlo technique to value path-

dependent options which are particularly common in real options applications, and to 

approximate the early-exercise boundary which is useful to decision-makers to 

substantiate the need to act now, delay, or abandon an investment. This leads to the 

following set of research hypotheses regarding the selection of a technique to evaluate 

path-dependent real options as well as an enabling technique to do so. 

 

Hypothesis 1.1.3 – Least-squares Monte Carlo approach for real options 

Real options with early-exercise properties may be analyzed using a least-squares Monte 

Carlo approach to both estimate their value and derive the early-investment policy and 
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the optimal-investment boundary. The optimal-investment boundary may be used by 

decision-makers to substantiate the need to invest now, delay, or abandon an investment. 

 

Hypothesis 1.1.4 –  Bootstrapping for trajectory generation 

Real options with early-exercise properties may be analyzed using a bootstrapping 

technique to generate risk-neutral trajectories for the evolution of the research and 

development program values via simulations and re-sampling. 

4.5 Meeting the Georgetown challenge and more 

Having navigated the waters of financial engineering and corporate finance, it is 

now time to summarize the results and provide a way forward that would both meet the 

challenges identified earlier in this thesis regarding the assessment of long-term staggered 

investments in aircraft development programs while meeting the requirements set forth 

by the Georgetown challenge mentioned in section 4.2.2 (Copeland and Antikarov [106]). 

So far, real options analysis has been advocated as being a superior technique to assess 

the economic viability of long-term corporate investments featuring flexibility while 

being exposed to many market risks. Out of the techniques surveyed, real options 

analysis was the only one that could account for the flexibility offered to management to 

revise program development roadmaps given the realization of the value-driving 

uncertainties. 

Within the context of real options analysis, Monte Carlo techniques have been 

identified as superior because they can handle many different types of uncertainties while 

accounting for correlations between uncertain metrics. The major advantage of Monte 

Carlo techniques for real options pricing is that they are versatile enough to eliminate the 
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need for major revisions whenever the surrounding conditions change. Monte Carlo 

techniques also enable the analysis of staggered corporate investments with many 

different dynamics and with flexible decision tollgates, meaning that subsequent 

investments might be rushed forward or delayed depending on the evolution of market 

uncertainties. 

Besides, within the context of Monte Carlo simulations for real options analyses, 

the use of the Esscher transform and its non-parametric counterpart for risk-neutralization 

provides a working framework sufficiently simple and versatile for wide acceptance 

amongst practitioners. The parametric Esscher transform can be used whenever the 

dynamics of the staggered investment value are well known and can be modeled using 

some classic stochastic processes. The non-parametric counterpart can be used whenever 

data is not sufficient to both assume and calibrate an underlying model or whenever the 

dynamics of the staggered investment value are too complex or too peculiar to be 

properly fitted with standard models. 

Finally, the popular marketed asset disclaimer assumption underpins the whole 

methodology and claims that the analyst subjective evaluation of the staggered 

investment is the best objective assessment of said investment, and that its intrinsic value 

without flexibility can play the role of a synthetic asset allowing to make the market 

complete. In case this assumption is not accepted, the Esscher transform and its non-

parametric counterpart actually select a specific probability measure that is consistent 

with the preferences of economic agents best described by a power or iso-elastic utility 

function. Table 22 maps the requirements of the Georgetown challenges to the Monte 

Carlo-based and Esscher-transformed valuation of staggered investments. 
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Table 22: Addressing the challenges facing the analysis of long-term corporate investment analyses featuring flexibility 

  Monte Carlo-based and Esscher-transformed real options approach 
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 Intuitively dominates other decision-

making methods 
• Ability to capture the flexibility in decision making 

• Recognize the value created by active and astute management 

Capture the reality of the problem • Ability to handle optimum timing issues related to decision-making using American-type options 

• Ability to handle staggered investment programs with decision gates using compound options 

Use mathematics that everyone can 

understand 
• Esscher transform ensures that risk-neutralization is performed in a transparent and tractable way 

• Non-parametric Esscher transform removes the requirement to calibrate complex models  

Rule out the possibility of mispricing 

by eliminating arbitrage 
• Esscher transform provides the price that would be enforced by arbitrageurs in a complete market 

• Esscher transform provides the price corresponding to the preference of economic agents with iso-

elastic utility functions in the case of incomplete markets 

Be empirically testable • Tough requirements as there are no published transacted prices for these investments 

• Only heuristic argumentation can substantiate whether the method provides acceptable solutions 

Appropriately incorporate risk • Handling of technical and market risk separately with technical risk analyzed with decision trees 

• Possibly difficult to estimate volatilities of some particular risks if no prior history exists 

Use as much market information as 

possible 
• Ability to use market information whenever possible to model the dynamics of the uncertainties 

driving the development program value 
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Ability to capture a complex reality 

with intertwined uncertainties 
• Monte Carlo simulations allow the use of many different stochastic behaviors for uncertainties 

• Monte Carlo simulations allow the modeling of correlations between some sources of uncertainties 

Ability to visualize uncertainties and 

the decision process 
• Visualization of the evolution of uncertainties affecting the decision process 

• Visualization of the evolution of the development program value over time 

Ability to handle corporate 

investments featuring exotic options 
• Recent Monte Carlo methods allow analyses of programs with potentially moving decision tollgates 

and therefore the search for optimum investment timeframes 

Ability to converge to a solution in a 

timely manner 
• Use of bootstrapping methods allow a reduction in computational time to generate trajectories of 

program values used for Monte Carlo simulations 
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CHAPTER 5: SCOPING THE PROBLEM: 

 RESEARCH QUESTIONS AND HYPOTHESES 

 

5.1 Revisiting the problem 

Following the review of the techniques most appropriate for the evaluation of 

staggered investments in research and development programs facing uncertainties and 

competitive pressure, it is now appropriate to come back to the original problem 

statement, synthesize briefly the identified issues, restate the research questions that are 

to be addressed, and identify how these map to the set of hypotheses proposed so far. In 

summary, the aim of this research is to analyze and evaluate investments made in the 

aircraft and engine manufacturing industry. Let’s now review the different parts of this 

sentence and what they entail.  

The aircraft manufacturing industry 

The aircraft manufacturing industry is best currently described as an oligopoly 

under assault. The term oligopoly refers to the fact that there are very few competitors 

and each of them is specialized in just one or two segments of the industry. For 

commercial aviation, there are generally no more than two major competitors within one 

single market segment. Airbus and Boeing dominate the upper end of the industry with 

aircraft over 100 passengers; Embraer and Bombardier dominate the regional jet segment 

with jets seating between 50 and 100 passengers; and finally ATR and Bombardier 

dominate the regional turboprop segment with turboprop seating between 40 and 80 
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passengers. For general aviation, the market is a bit fuzzier but still dominated by no 

more than three or four major competitors within each industry segment. Cessna, 

Gulfstream, Bombardier, and Dassault dominate the upper end of the industry with 

business jets; Beechcraft and Piper dominate the business propeller aircraft segment; 

Cessna, Cirrus, and Diamond dominate the small recreational aircraft segment; and 

finally Cessna, Cubcrafter, Flight Design, and Remos dominate the light sport aircraft 

segment. 

If one extends the aircraft manufacturing industry to some of its main suppliers 

such as engine manufacturers, a similar type of concentration is observed: General 

Electric in partnership with Snecma, Rolls Royce, and Pratt & Whitney dominate the 

turbofan manufacturing business segment while Lycoming, Continental, and Rotax 

dominate the internal combustion engine business segment. 

These oligopolies are under attack and have recently attracted interest. Whether it 

be for the consistent profitability of oligopolists over the years or for an eagerness to 

become less reliant on foreign industries, many countries have recently pushed for the 

development of a local homegrown aerospace industry. Even if the barriers to entry are 

high due to the demands of airlines for efficient and reliable aircraft at entry into service, 

the political push may prove successful in the long-term and some of these new 

manufacturers may emerge to become formidable competitors to incumbents. As a result, 

an increase in competitive pressure is observed and needs to be factored in by established 

manufacturers. In fact, it is no longer business as usual in a duopoly: incumbents must 

now ensure that their designs are competitive with all these new offerings. With this 
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description of the aircraft manufacturing industry, the first observation was stated as 

follows: 

Observation 1: 

Consistent profitability and politics stir up the interest for a homegrown aircraft 

development industry which leads to a substantial increase in the competitive pressure. 

Without a corresponding growth in the aircraft demand, manufacturers will need to 

account for the competitive environment early-on in the design to ensure the business 

plan is sound and the product portfolio is both competitive and well positioned in the 

market. 

Investments in the aircraft manufacturing industry 

Investments in the aircraft manufacturing industry can be described by a single 

word: substantial. In fact, these investments are so large that a common saying within the 

aerospace community is that aircraft and engine manufacturers are betting the future of 

their companies whenever a new product is launched [160]. Once an engine or aircraft 

development program is launched and manufacturing starts, there are billions of dollars at 

stake and very few opportunities for redemption if the business case is ill-founded. Under 

these circumstances, the development of a sound business case should include the study 

of sensitivities, robustness, and contingency plans. This led to another observation: 

Observation 2: 

In a competitive industry with long development cycles, there are few opportunities in the 

later part of the development process for manufacturers to change course as the 

uncertain environment unfolds. In this context, robust design simulation must be coupled 
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with extensive competitive scenario investigations to ensure that the realization of 

uncertainty does not undermine a design that otherwise meets all customer requirements. 

 

Another characteristic of investments in the aircraft manufacturing industry is the 

uncertainty surrounding them. As aircraft developments are long and production runs 

often exceed a decade, there are ample opportunities for the surrounding environment to 

change and evolve while aircraft designs remain frozen due to the costs of certifying even 

minor upgrades and improvements. This led to a third observation: 

Observation 3: 

Aircraft and engine developments are characterized by longer and longer development 

cycles and are therefore subject to significant risk due to the uncertain and volatile 

business environment. Design methods and design processes must evolve accordingly to 

provide enough flexibility to managers to steer programs into profitable directions as the 

uncertainty unfolds. 

 

Besides, aircraft operations are affected significantly by factors outside the 

control of manufacturers and operators such as new noise regulations, new emission 

regulations, and the constantly evolving price of jet-fuel. In this context, it is of 

paramount importance to both recognize and use the flexibility offered to management 

during the early phase of development to alter course and steer projects into profitable 

directions as uncertainties unfold. However, traditional investment evaluation methods 

are inadequate to capture this flexibility offered early in the design and to handle long-
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term research and development programs. New methods must therefore be developed and 

this led to the fourth observation stated: 

Observation 4: 

In a volatile industry sensitive to business cycles, uncertain energy prices and evolving 

customer requirements, managerial flexibility defined as the ability of management to 

actively steer research and development programs into profitable directions is valuable 

and must be accounted for when business plans are laid-out. Traditional capital 

budgeting methods do not usually account for this flexibility and consequently 

undervalue significantly long-term aircraft and engine developments.  

Analyses and evaluation of investments in the aircraft manufacturing industry 

Analyzing and evaluating these investments entail many different kinds of 

investigations, from market investigations to technical analysis and financial assessments. 

Investigating all these aspects would be beyond the scope of a research thesis. Emphasis 

was consequently put on one aspect that is both specific and relevant to this industry: the 

timing of development programs to optimize profits and the associated performance 

evaluation metrics. Indeed, because of the length of development cycles, timing becomes 

critical to ensure a continuum of development programs while still meeting budget 

constraints. Windows of opportunities appear for the infusion of new technologies into 

new designs as well as for the launch of new products, and these windows must be 

recognized to maximize profits. This led to the final observation stated below: 

Observation 5: 

In an industry where manufacturers can neither afford to have a gap in their development 

pipeline (to retain skilled workforce) nor develop two clean-sheet designs concurrently 
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(due to limited funding and limited engineering capabilities), the time at which 

technologies become mature enough for commercial application becomes crucial. These 

timing issues need to be anticipated with both the company and the competition product 

development pipelines in mind.  

5.2 Research questions and hypotheses 

Some interesting aspects resulting from several observations of the aircraft and 

engine manufacturing industry and its evolution over the past decade have been 

presented. These aspects were highlighted for two reasons. First, they may substantially 

impact the state of the business for the coming years. Second, because these aspects will 

probably alter the current state of the business, a rethink of some of the methods and 

processes currently used by the industry may be warranted. In this context, the 

overarching research question was formulated as follows: 

Overarching Research Question 

In the context of aerospace research and development optimization, how can value-based 

design methods be improved to identify precursors of technological and market 

opportunities while reflecting the specific challenges associated with long-term and 

uncertainty-plagued developments, and while accounting for the competitive nature of 

the business? 

Drawing on the literature review presented earlier, a set of three high-level 

hypotheses named “method hypotheses”, are formulated to answer the overarching 

research question. The first hypothesis deals with a proposed improvement to current 

value-driven methodologies to handle long-term and uncertain development programs 

and to account for the flexibility offered to decision-makers to take advantage of 
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opportunities. This hypothesis proposes a way forward to improve current state-of-the-art 

economic assessment methods. The second hypothesis deals with a proposed 

improvement to current viability assessments by the introduction of competitive aspects 

early-on during the economic analysis of future concepts. The third hypothesis proposes a 

concurrent use of these two improvements to yield better evaluation of long-term and 

uncertain research and development programs with staggered investments.  

Hypothesis 1 — Real options for valuation with flexibility under uncertainty 

Within the context of aerospace research and development programs, real options 

methods enable the development of value-based design frameworks accounting for the 

staggered nature of investments and the value created by managerial flexibility in 

uncertain environments. 

Hypothesis 2 — Game theory for investigation of economic robustness with competition 

Within the context of aerospace research and development programs, game theoretic 

methodologies enable transparent and traceable analyses that allow decision-makers to 

better investigate the economic robustness of selected technology and product 

development streams in a competitive environment characterized by uncertain moves by 

competitors. 

Hypothesis 3 — Combined real options and game theoretic analyses 

Real options methodologies combined with game theoretic methodologies allow the 

identification of windows of opportunities and yield analyses superior in term of 

robustness to either of these two analyses performed independently. 
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Having introduced three method hypotheses advocating the use of both real 

options and game theoretic analyses, a thorough literature review leads to some further 

questioning: how can these methods be adapted to the problem under review? In fact, 

they lead to a set of three second-level research questions, “modeling research 

questions” and their associated second-level hypotheses, “modeling hypotheses”. 

Indeed, assuming that real options inspired methodologies present the best 

framework for the analyses of long-term and highly uncertain research and development 

programs, the first modeling research question is related to the pertinence of these models 

to evaluate non-traded investments in the aerospace industry. The second modeling 

research question pertains to the modeling of flexibility offered to decision-makers to 

time investments optimally since investments are usually made whenever decision-

makers feel like the conditions are optimal. Finally, assuming that game theoretic 

methodologies present the best framework for the analyses of competitive issues, the 

final modeling research question asks how to model the competitive scenarios that are 

prevalent in the aerospace industry. 

Research Question 1.1 — Creation of an option-thinking framework 

Within the context of uncertain product and technology investment analysis, how can 

state-of-the-art option-based valuation methods be improved upon to ensure their domain 

of application is consistent with their underpinning assumptions?  

Research Question 1.2 – Managerial flexibility and timing of investments 

How can the flexibility offered to management to optimally time the launch of new 

product and technology developments be accounted for in a real options framework? 
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Research Question 1.3 – Competitive scenario modeling 

How can game theoretic analyses be used to adequately model competition in the 

aerospace industry and how can they be used to identify profitable product and 

technology development strategies? 

A review of the existing literature on financial options and real options points to 

the use of one particular type of option, which is suitable for the analysis of investments 

in the aerospace community. It is able to relax one assumption of the more popular 

models while accounting for the flexibility to optimally time investment decisions. 

Similarly, reviewing the literature and observing the nature of competition in the 

aerospace industry oligopolies lead to a specific type of competitive scenario to 

investigate. Indeed, while research and developments are usually made somewhat 

simultaneously, actual decisions to launch new aircraft and engine programs are made in 

a sequential fashion, with one competitor being the leader and other competitors waiting 

to see what happens before launching their own products. This yields the following set of 

modeling hypotheses: 

Hypothesis 1.1 – Path-dependent options to model managerial flexibility 

As uncertainty unfolds, technological and market opportunities emerge and disappear. 

Flexible management and flexible timing of investment decisions allow the maximization 

of the upside potential of these opportunities. Path-dependent real options may present a 

means to model the flexibility offered to management in timing technology development 

decisions. 
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Hypothesis 2.1 – Equilibrium in sequential moves for competitive scenarios 

Equilibrium-types of solutions in sequential competitive scenarios provide means to 

quantitatively measure the impact of competing designs on profitability and to identify 

robust strategies. 

Beyond the assumption dealing with the type of real options suitable for corporate 

investment analyses, popular real options models are also too constrained in the 

requirements they set for the evolution of the underlying investment. This leads to further 

reckoning and questioning whether relaxing some of the process-related assumptions 

would pay in the long-term for the general applicability of real options. This yields the 

first third-level research question also named “technical research question.” 

Research Question 1.1.1 – Enlarging the domain of applicability of real options 

How can the domain of application of current state-of-the-art real options methods be 

extended to include product and technology investments with value processes not 

following classic geometric random walks? 

A review of the literature on financial options shows that in order to model 

processes more complex than classic geometric random walks, simulation becomes a 

viable, if not necessary, option. Indeed, simulation seems to be the preferred way to 

handle multi-dimensional options featuring correlations between underlying sources of 

uncertainty and to handle discontinuous stochastic processes following external shocks in 

the market. This leads to the following third-level hypothesis also referred to as 

“technical hypothesis.”  
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Hypothesis 1.1.1 – Monte Carlo methods for real options analyses 

Within the context of the aerospace industry, Monte Carlo based real options methods 

present the best approach to solve for the arbitrage-free value of development featuring 

flexibility. 

As much as simulation for the pricing of options seems pertinent and 

straightforward, there may still be some obstacles on the way to implementation by 

practitioners. Thus, a second set of technical research questions is formulated to solve the 

issue related to the requirement to perform the simulations under the equivalent risk-

neutral probability measure: 

Research Question 1.1.2 – Improving Monte Carlo methods for real options analyses 

Monte Carlo simulations based methods seem appropriate to value corporate investments 

featuring managerial flexibility and programmatic optionality. With usability by 

practitioners in mind, how can these methods be modified to alleviate the complexity of 

finding the proper equivalent probability measure required for the expectation 

computation while maintaining their rigor? 

Research Question 1.1.3 – Adaptation of Esscher transform for pricing real options 

How can option pricing by means of Esscher transform be adapted to a product and 

technology development analysis within the context of a real options methodology? 

Drawing on the literature research, the non-parametric Esscher transform seems to 

be the most appropriate technique to perform the change of measure required for option 

pricing using simulations. Another technical hypothesis is therefore formulated to answer 

the two previous technical research questions: 
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Hypothesis 1.1.2 – Non parametric Esscher transform for pricing real options 

Real options valuation via non-parametric Esscher transforms is a promising framework 

for staggered investment analyses. It is based on rigorous foundations, offers a clear and 

transparent methodology for practitioners, and uses probabilistic techniques widely 

accepted within companies. 

Coming back to the modeling research questions and hypothesis related to the 

flexibility offered to managers to time investment decisions, another angle investigated is 

the detection of optimal times to launch research and development endeavors. This 

detection study leads to the identification of precursors of successful research and 

development programs through the definition of the early-investment boundary. This 

immediately leads to a new set of technical research questions. The first technical 

research question deals with the ability to define the early-investment policy and 

therefore approximate the optimal early-investment boundary. The second technical 

research question deals with the ability to use early-investment boundary approximation 

schemes in conjunction with the previously proposed Esscher-based risk-neutralization 

technique. 

Research Question 1.2.1 – Trigger boundaries to detect trigger events 

How can trigger boundaries be defined and used for the identification of precursors of 

successful development programs? 

Research Question 1.2.2 – Bootstrap for trajectory generation 

How can algorithms approximating the early-investment boundaries be used in 

conjunction with the non-parametric Esscher risk-neutralization? 
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Drawing on the literature review of techniques developed and used in the 

quantitative finance industry, the least-squares Monte Carlo approach developed to value 

American and Bermudan financial options appears to be the most appropriate method to 

value path-dependent real options. However, because the technique relies on regressions 

and because the non-parametric Esscher risk-neutralization assigns different weight 

factors for each and every observation, the two techniques are not directly usable 

together. Consequently, these techniques need to be updated by changing the way 

trajectories are generated during the simulation. In fact, trajectories have to be simulated 

again using a re-sampling method to yield new trajectories that are risk-neutral. A new 

set of two technical hypotheses is therefore formulated: 

Hypothesis 1.1.3 – Least-squares Monte Carlo approach for real options 

Real options with early-exercise properties may be analyzed using a least-squares Monte 

Carlo approach to both estimate their value and derive the optimal trigger boundary. 

This trigger boundary helps decision-makers substantiate the need to invest now or 

abandon a development. 

Hypothesis 1.1.4 – Bootstrap for trajectory generation  

Real options with early-exercise properties may be analyzed using a bootstrap technique 

to generate, under the equivalent martingale measure, trajectories representing the 

evolution of the development program values. 

5.3 Matching research questions and hypotheses 

The diagram in Figure 21 summarizes and maps the different research questions 

underpinning this research endeavor to their corresponding hypotheses. 
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Figure 21: Research questions and hypotheses

Overarching Research Question:

In the context of aerospace research and development optimization, how can value-

based design methods be improved to identify precursors of technological and market
opportunities while reflecting the specific challenges associated with long-term and
uncertainty-plagued developments, and while accounting for the competitive nature of

the business?

Hypothesis 1 — Real options for valuation with flexibility and uncertainty

Within the context of aerospace research and development programs, real options methods enable the development of

value-based design frameworks accounting for the staggered nature of investments and the value created by managerial
flexibility in uncertain environments.

Hypothesis 2 — Game theory for investigation of economic robustnesswith competition

Within the context of aerospace research and development programs, game theoretic methodologies enable transparent and
traceable analyses that allow decision-makers to better investigate the economic robustness of selected technology and product

development streams in a competitive environment characterized by uncertain moves by competitors.

Research Question 1.1:

Within the context of uncertain technology investment analysis, how can 

state-of-the-art option-based valuation methods be improved to ensure their 
domain of application is consistent with their underpinning assumptions? 

Hypothesis 1.1.1 – Monte Carlo methods for real options analyses

Within the context of the aerospace industry, Monte Carlo based real options methods present the
best approach to find the value of developments featuring flexibility.

Research Question 1.1.2:

With usability by practitioners in mind, how can Monte Carlo based
methods be modified to alleviate the complexity of finding the

proper equivalent probability measure required for the expectation
computation while maintaining their rigor?

Research Question 1.1.3:

How can option pricing by means of Esscher transform be adapted
to a technology development analysis within the context of a real

options methodology?

Hypothesis 1.1.2 – Non parametric Esscher transform for pricing real options

Real options valuation via non-parametric Esscher transforms enables staggered investment
analyses. It is based on rigorous foundations, offers a clear and transparent methodology for

practitioners, and uses probabilistic techniques widely accepted within companies.

Hypothesis 1.1 – Path-dependent options to model managerial flexibility

As uncertainty unfolds, technological and market opportunities emerge and disappear. Flexible management
and flexible timing of investment decisions allow the maximization of the upside potential of these

opportunities. Path-dependent real options may present a means to model the flexibility offered to
management in timing technology development decisions.

Hypothesis 1.1.3 – Least-squares Monte Carlo approach for real options

Real options with early-exercise properties can be analyzed using a least-squares Monte Carlo
approach to estimate their value and derive the optimal trigger boundary. This trigger boundary

helps decision-makers substantiate the need to invest now or abandon a development.

Research Question 1.1.1:

How can the domain of application of state of the art real options
methods be extended to include technology investments with value

processes not following classic geometric random walks?

Research Question 1.2:

How can the flexibility offered to management to optimally time the launch of
new technology developments be accounted for in a real options framework?

Research Question 1.2.2:

How can algorithms approximating the early-investment
boundaries be used in conjunction with the non-parametric

Esscher risk-neutralization?

Hypothesis 3 — Combined real options and game theoretic analyses

Real-options methodologies combined with game theoretic methodologies allow the identification of windows of opportunities
and yield analyses superior in term of robustness to either of these two analyses performed independently.

Hypothesis 1.1.4 – Bootstrap for trajectory generation

Real options with early-exercise properties may be analyzed using a bootstrap technique to
generate, under the equivalent martingale measure, trajectories representing the evolution of the

development program value.

Hypothesis 2.1 – Equilibrium in sequential moves for competitive scenarios

Equilibrium-types of solutions in sequential competitive scenarios provide means to quantitatively measure the
impact of competing designs on profitability and to identify robust strategies.

Research Question 1.2.1:

How can trigger boundaries be defined and used for the
identification of precursors of successful development programs?

Research Question 1.3:

How can game theoretic analyses be used to adequately model competition in
the aerospace industry and how can they be used to identify profitable

technology development strategies?
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CHAPTER 6: METHODOLOGY 

 
In this section, a novel methodology is proposed to tackle the issues presented so 

far. This methodology is introduced step by step and is progressively contrasted with 

current traditional methodologies aimed at analyzing research and development 

programs. However, before the methodology is introduced, a proof-of-concept study is 

formulated. The aim of this pilot study is to introduce and demonstrate the applicability 

of the proposed methodology. Later on, this case study is used to verify the approach 

undertaken and validate some of the hypotheses formulated. 

6.1 Brief overview of an industry problem 

In this pilot study, a Performance Improvement Package (PIP) is being proposed 

as a means to improve the operating economics of a currently out of production turbofan 

engine. The aircraft manufacturer has identified a gap in its development stream which 

makes it possible to develop, certify, and produce the package. Decision-makers have to 

identify whether the conditions are currently optimal for the commercial launch of this 

product and whether it makes sense to commit resources to this development now. If not, 

there is a wide window to actually launch the development. The manufacturer can then 

delay its initiation to wait for trigger events that will ensure that the development is a 

commercial success.  

6.1.1 Windows of possibilities and windows of opportunities 

For the pilot study under investigation, the manufacturer has identified a gap in its 

development stream between two periods of high activity. The first period of high 
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activity is related to a previous development requiring substantial engineering resources 

to complete the detailed design and to get certification. The second period of high activity 

concerns a future development for the replacement of a current engine design that is 

getting obsolete. This second program is therefore deemed vital for the profitability of the 

manufacturer and is projected to tie its engineering resources for several years onwards. 

In between, there is a development gap during which the manufacturer has no projected 

development and during which engineering resources might be available. This is an 

unfortunate situation for aircraft and engine manufacturers as they have to retain the 

workforce to keep skilled and experienced engineers in-house for future programs. In this 

context, a window of possibility for the development of the PIP program is defined as the 

ability to undertake a development program. This situation is depicted in Figure 22. 

 

Figure 22: Timeline of manufacturer development stream 

Of interest however are not windows of possibilities but rather windows of 

opportunities which are defined as the timeframe during which, and the condition for 

which, launching a new development program is best. If decision-makers invest too early 

within the window of possibility, they only have limited information and this is risky as 

the realization of uncertainty might undermine the development program. If decision-

makers invest too late, risk also increases since the target market size is reduced as 

airlines ground older aircraft and become reluctant to invest in an ageing fleet. To be 

meaningful to decision-makers, a window of opportunity has to be contained within a 

TimeInitial R&D Gap
Development Resources 
Tied for Other Programs

Development Resources Projected to be 
Tied for Other High Priority Programs

Manufacturer Development Stream:

Possibility window
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window of possibility. Therefore, the largest window of opportunity is the window of 

possibility.  

In addition, windows of opportunities are not static: they morph in real time to 

adjust to the new reality that unfolds. Increasing energy prices drive the demand for more 

efficient engines and a low capital expenditure retrofit to reduce fuel consumption looks 

like an attractive option for airlines. Alternatively, emerging competitors with new engine 

designs or even competing improvement packages may impact the demand for the PIP 

and therefore impact the profitability of the program. Combined together, these effects 

may either stretch or constrict the window of opportunity. This dynamic process is 

depicted in Figure 23 where the impact of progressive aircraft retirement and the impact 

of competition on the opportunity window are highlighted.  

 

Figure 23: Value leakages and their effects on the opportunity window 
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6.1.2 Development of the Performance Improvement Package 

The development process for the Performance Improvement Package may be 

described as a staggered development process featuring decision tollgates. It is articulated 

around four main phases, starting with the initial market research and conceptual design, 

followed by preliminary and detailed developments, followed by certification and testing, 

and finally ending with production. Each of these phases is separated by a decision 

tollgate at which point management can display some flexibility and decide whether to 

pursue, delay, or abandon the development altogether if the market conditions are not 

right. This development timeline is shown in Figure 24. If the development program goes 

ahead, then additional funding is committed and spent during the following phase. All 

four of these phases do not have the same resource requirements: detailed development 

and certification and testing are the most expensive. Consequently, it is unlikely that the 

program will be abandoned at the fourth decision tollgate given that the following phase 

is relatively cheap and that so much has already been spent during the previous phases. 

The choice of delaying or abandoning the development is nevertheless very relevant at 

the second and third decision tollgates if conditions are not favorable. 

 

Figure 24: Development timeline and associated milestones 
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possibility as well as the hard constraints regarding the minimum time required to 

perform each of the four development phases is used to derive four sub-windows of 

possibility. These four sub-windows of possibility indicate the time-windows during 

which a decision to fund the initial market research, the detailed development, the 

certification and testing, and finally the production must be made. They are consequently 

referred to as decision windows.  

In order to derive these decision windows, an investigation is carried out to 

determine the latest times at which the four decisions need to be made, as well as the 

earliest times at which the four decisions can be made. The process of figuring out these 

decision windows is illustrated in Figure 25. 

 
Figure 25: Deriving decision windows 

6.1.4 Objectives to be attained and expected results 

The objective of this proof-of-concept study is to investigate the optimal 

conditions for the launch of the development program. This includes finding out the 

optimal timing of decisions and the corresponding state of uncertainties leading to a 
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successful development program. To do so, the baseline investment timing is introduced 

as the latest time at which investment decisions can be made for all four decision 

windows. Any time a decision is made before this baseline investment timing, the 

decision is called an early-investment decision. 

The investment policy is defined as the policy of timing investments optimally. In 

other words, it means that the investment policy maximizes the value of the PIP 

development program for the company. In doing so, the investment policy determines an 

early-investment boundary. The early-investment boundary is the set of external 

conditions (time and state of uncertainties) that makes investing early optimal. Notional 

early-investment boundaries are given in Figure 26 for each decision window pertaining 

to the PIP development program.  

 
Figure 26: Early-investment boundaries at each decision window 
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by holding-off and waiting to get more information about the trajectories of the 

uncertainties. Investigating the shape of the early-investment boundary in a parametric 

environment yields many interesting observations: 

• What is the impact of technical uncertainty on the early-investment boundary? 

• How does not meeting the PIP performance targets impact the early-investment 

boundary?  

• How do value leakages impact the shape of the early-investment boundary? 

• Which combinations of uncertainties substantially impact the shape of the early-

investment boundary? 

•  How can these combinations be classified to yield a list of precursors or trigger 

events of potentially successful research and development programs?  

6.2 Methodology development 

In this section, a typical business case evaluation method is first reviewed in order 

to highlight gaps and indicate where the proposed improvements take place. Next, the 

FLexible AViation Investment Analysis method (FLAVIA) is presented in details. 

6.2.1 Traditional evaluation method 

Following the literature review presented earlier, a research and development 

methodology that is representing the current approach to business case construction and 

investment evaluation is set up. It starts with a set of scenarios that are probable and that 

may be ranked by their likelihood or by their outcome: worst case scenario, best case 

scenario, and most likely scenario. These scenarios are constructed using potential 

realization of still uncertain parameters and could be related to uncertain competitor 
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moves, uncertain technical achievements, and uncertain states of the economy. A 

morphological decomposition of the different uncertainties and their potential best case, 

worst case, and most likely realizations leads to a matrix representing the combinations of 

these uncertain parameters. The subsequent re-composition of these uncertainties and 

their potential outcomes yields a combinatorial number of scenarios. 

Using these scenarios, a market analysis is performed. The goal of the market 

analysis is to separate the overall market into various market segments, each representing 

customers with homogeneous preferences. These preferences are built up using different 

attributes that can be represented by different metrics which may be quantitative or 

qualitative. The functions linking the level of one attribute to a level of preference are 

called single attribute utility functions. The tradeoff between these single attribute 

utilities is captured by weighting these functions and accounting for interactions. When 

combined together, these functions lead to a multi-attribute utility function which 

represents the overall preference of customers. In the remainder of this research, the 

multi-attribute utility function representing the overall preference of customers is referred 

to as the overall evaluation criterion. 

Following the market segmentation, a preliminary assessment of the demand is 

formulated by investigating the market reaction to the new product offering. This is done 

by looking at how the new product is performing when used by the end-customers. This 

market reaction analysis is performed at the market-segment level and then aggregated 

using the size of each market segment. For aerospace research and development 

applications, the market reaction will be gauged by investigating how the new aircraft or 

the new technology is performing when operated on a network of flights representing the 
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typical operations of airlines within the market segment. This will yield a preliminary 

estimate of the demand for the aircraft or for the technology package to be infused into 

existing fleets. 

In the last step, the research and development program profitability is assessed by 

looking at the demand for the product and estimating the investments required to fund the 

research and development program. The timeline of revenues and investments is used to 

derive a figure of merit representing the profitability of the program. Usually, a 

discounted cash flow analysis is performed at this point to estimate the net present value 

or the internal rate of return of the development program. This figure of merit is then 

used to substantiate whether the development program should or should not be launched. 

The different steps used to build a business case are illustrated in Figure 27. This process 

is referred to as the traditional methodology. 

 

Figure 27: Traditional methodology to build and evaluate a business case 
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6.2.2 Proposed evaluation method 

The proposed methodology builds upon the traditional methodology but makes 

use of advanced evaluation techniques presented during the literature review which aims 

at assessing staggered investments featuring flexibility. The proposed methodology is 

different from the traditional one in three fundamental ways: 

• The profitability analysis is performed using a real option-based analysis to 

account for the value of flexibility offered to management to delay or abandon the 

research and development program. This is why the profitability analysis is 

renamed “staggered investment analysis”. A complete reformulation of this 

assessment is proposed using a novel real option-based approach constructed via 

cross-fertilization of techniques and methods used in the actuarial sciences, in 

statistics, and in the quantitative finance industry. 

• The profitability analysis is linked back to the competitive scenario analysis and 

to the aircraft evaluation analysis to dynamically update the demand for the 

product as uncertainty unfolds in either favorable or unfavorable directions. This 

affects the payoff structure in the proposed real option-based methodology. 

• The result from the profitability analysis is used and analyzed in a game theoretic 

setting to figure out what course of action is most profitable and most robust with 

regards to uncertain moves by the competition. This analysis is a game theoretic 

based analysis which aims at finding profitable and robust strategies. 

This leads to a new depiction of the business case construction process highlighted in 

Figure 28. In this depiction, only high level interactions between the various steps of the 

proposed methodology are highlighted in order not to clutter the graph.  
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Figure 28: Proposed methodology to build and evaluate business cases in R&D 

 

6.2.3 Detailed implementation of proposed evaluation method 

 In this section, the proposed methodology is further decomposed into more 

detailed steps to present a comprehensive review of the method implementation. It is 

articulated around nine main steps. The first steps deal with the competitive and market 

analysis, while the last ones deal with the profitability analysis and the detection of 

trigger events. More emphasis is given on these later steps since this is where most of the 

novelty and originality takes place. 

Scenario Analysis 

The scenario analysis itself is split into two steps with the first step being a 

morphological decomposition of the competitive environment and the second step being 
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an identification of the uncertainties driving the value of the research and development 

program. This is illustrated in Figure 29. In the first step, different scenarios regarding the 

state of the business are investigated. This includes an investigation of the different 

strategic options offered to the manufacturer as well as to its competitors, and an 

investigation of the uncertainties surrounding the development program that have 

potential to substantially affect its success.  

 
Figure 29: Scenario generation and uncertainty modeling 
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This review results in the formulation of either simultaneous or sequential competitive 

games for which many strategic moves are studied and an investigation of equilibrium 

inducing strategies is performed. For simultaneous competitive games, a matrix of 

strategies is formulated and is populated using results from the yet to be performed 

profitability analysis and some estimates of the profitability of competitors. For 

sequential games, decision trees usually referred to as extensive-form representations are 
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representation is populated using results from the yet to be performed profitability 

analysis as well as some estimates of the profitability of competitors. Whichever 

representation is retained, the end-objective is to solve these games to find equilibrium 

types of solutions. These equilibrium solutions are defined by the set of actions and 

reactions from which none of the competitors have any incentive to deviate. They 

therefore define a set of competitively-robust strategies. 

On the uncertainty side, the main sources of uncertainties likely to affect the 

economic success of the development program are reviewed. This review includes both 

idiosyncratic and market uncertainties although these will be treated differently. 

Idiosyncratic uncertainties are uncertainties related to the manufacturer and its 

ability to deliver the product promised on time and according to guaranteed 

specifications. They include supply-chain uncertainty, schedule uncertainty, production 

ramp-up uncertainty, certification uncertainty as well as performance and technical 

uncertainty. Since there are no historical databases regarding these uncertainties, they 

cannot be regressed to fit time-series or stochastic models. Instead, these types of 

uncertainties are best analyzed using decision trees constructed by identifying worst case, 

best case, and most likely scenarios. Subject matter experts usually provide assessments 

about the likelihood of each branch in the decision trees as well as ranges for the 

uncertain parameters to be quantified. Probabilistic analysis can then be performed to 

assess possible outcomes by using Monte Carlo simulations using distributions for the 

uncertain parameters (usually triangular distributions using the minimum and maximum 

ranges supplied by subject matter experts). 
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Market uncertainties are uncertainties that affect the whole market, and therefore 

all competitors. These include air-transportation demand uncertainty, energy-price 

uncertainty, emission taxation, and other regulatory uncertainties. These types of 

uncertainties usually have a history and this history can be used to fit and calibrate time-

series or stochastic models.  

The output from these steps is two-folds: a set of scenarios to be investigated that 

combine both competitive and idiosyncratic uncertainty aspects, as well as a set of market 

uncertainties with their corresponding models. 

Market Analysis 

The purpose of the market analysis is to perform an operational decomposition to 

investigate which customers have similar types of operations to then recombine similar 

customers into homogeneous market segments for preference analysis. The process is 

illustrated in Figure 30. To do so, the type of network as well as the type of operations of 

potential customers is reviewed to find similarities among them. Similarities can be very 

broad, but in the context of aircraft and engine developments these include the typical 

flight lengths, typical number of hours flown per year, ease of access to capital, or the 

cost structure of the airlines. For instance, operators with higher flight-length to flight-

cycle ratios (FL:FC) are usually more sensitive to fuel-burn, while operators without easy 

access to capital are more reluctant to embark in high capital expenditure acquisitions.  
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Figure 30: Market analysis and the determination of preferences 

These homogeneous market segments enable the determination of a unique set of 

preferences for the aircraft operators involved. These preferences are built-up using 

different attributes which can be represented by different metrics. These metrics may be 
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preference is called a single attribute utility function. When several attributes must be 

accounted for, then tradeoffs between these attributes must be captured. This is done by 

weighting the various single attribute utility functions and accounting for first and second 

order interactions. When these single attribute utility functions are combined together 

while accounting for tradeoff preferences and interactions, one gets a multi-attribute 

utility function. This function represents the overall preference of customers within a 

market segment given a set of attributes. This function is referred to as the “overall 

evaluation criterion”. 
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Market Reaction and Demand Analysis 

The market reaction and demand analysis step is performed to model the decision 

made by potential customers regarding the purchase of the aircraft, engine, or technology 

package. This analysis is split into two subtasks as depicted in Figure 31.  

 
Figure 31: Market reaction and demand estimation 

First, a competitive scenario generated during the very first step of the 

methodology as well as the overall evaluation criterion constructed in the second step of 
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Next, a decision choice model is used to translate these value-to-the-customers 

into purchasing probabilities and purchasing preferences. This step is quite difficult as no 

realistic calibration can be performed for the choice model due to the lack of historical 

data. Besides, even if historical data were to be available, it would most probably be 

contaminated by some noise and other intangible aspects that are not accounted for in this 

thesis such as political pressure, historical relationship, and loyalty between 

manufacturers and operators. In this context, a simpler is better philosophy is retained 

Market Model and 
Airline Preferences

Estimated Demand

Market Reaction to Of fering
& Demand Analysis

Step III

Technology operating benef its,
Competitor achievements

Overall market size, 
Market shrink over time,
Market segment size

Commercial revenues of  
technology development 
program

Fuel Burn 
Difference

CO2 
Emission 

Difference

Maintenance 
Cost 

Difference

Ops. 
Between
0-199 nm

138,874 1,355,262 669,876

Ops. 
between 

200-399 nm
184,987 1,805,269 144,158

Ops. 
between 

400-599 nm
237,448 2,317,231 50,981



www.manaraa.com

177 

whereby the value to the customer is selected as the exclusive metric to decide whether a 

market segment, as a whole, is willing to purchase the product. 

Manufacturer Profitability 

The manufacturer profitability analysis is divided into five tasks and represents 

the vast majority of the innovations proposed in this research. These tasks follow the 

different steps required to perform a real options analysis as inspired by the outcomes of 

the literature research and the resulting cross-fertilization.  

First task 

The first task illustrated in Figure 32 is to simulate the evolution of the value of 

the research and development program. These simulations are generated using one 

scenario obtained in the first step of the proposed methodology as well as the evolution of 

the market uncertainties. The scenario combines one possible competitive setting and one 

vector representing the levels of each of the idiosyncratic uncertainties. The market 

uncertainty evolutions are simulated using the calibrated models from the first step of the 

proposed methodology.  
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Figure 32: Simulation of the evolution of the R&D program value 

This will result in the simulation of trajectories for the value of the research and 

development program. By using Monte Carlo simulations, the evolution space is sampled 

many thousands of times to get an approximate distribution of the likelihood of the 

possible values of the research and development program. Since these evolutions are 

simulated using stochastic processes calibrated with observed historical data, the 

evolution is simulated under the historical probability measure. 
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Figure 33: Change of probability measure and risk-neutral terminal value distribution 

The non-parametric approximation of the Esscher transform, also known as 

exponential tilting, is used for this transformation. Provided some mild conditions are 

satisfied (stationary and independent increments) for the stochastic process generating 

these terminal distributions, the non-parametric Esscher transformation leads to a new 

equivalent distribution for the value of the research and development program. This new 

probability distribution is called the risk-neutral distribution. It has the exact same values 

as the original distribution but each realization now carries a weight to actually tilt the 

original distribution. 
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previously to generate new risk-neutral trajectories for the evolution of the research and 

development program value. Following the literature review, new trajectories can be 

generated using a resampling technique known as bootstrapping. This is divided in two 
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Figure 34: Simulation of R&D program value under risk-neutral probability measure 

The first action consists in using the risk-neutral distribution obtained in the 

previous step and expressing each absolute value for the research and development 

program in terms of equivalent daily returns if the simulation for the time evolution is 

done using daily steps.  The second action consists in generating new trajectories for the 

evolution of the R&D program value by repetitively sampling with replacement from the 

risk-neutral distribution of returns. This resampling is done accounting for the weight 

assigned to each observation during the previous transformation. This leads to new 

trajectories that are risk-neutral by construction. 

Fourth task 

The fourth task is dedicated to the evaluation of research and development 

investments having timing flexibility. This task investigates the possibility of investing 

early and defines an early-investment policy to determine when the time is optimal to 

invest earlier rather than later. This task is subdivided into two actions as illustrated by 

Figure 35. 
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Figure 35: Derivation of the early-investment policy for path-dependent real options 

Following the literature review and the hypotheses presented earlier, the 

algorithm of Longstaff and Schwartz using least-squares Monte Carlo regressions is used 

to determine whether investing early or delaying the investment by at least one period is 

optimal. The algorithm approximates the one-step-ahead conditional expectation for the 

value of the research and development program. By doing so, the algorithm provides two 

important pieces of information: the first is the value of the R&D program for the 

company and the second is an approximation of the early-investment policy. 
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investment boundary. This task is depicted in Figure 36.  
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point at which the decision to invest changes. By searching for these trigger points at 

each time-step in the simulation, the analyst is able to approximate an early-exercise 

boundary curve (if there is a single source of uncertainty) or an early-exercise boundary 

surface (if there are two sources of uncertainties). 

 
Figure 36: Analysis of the optimal set of conditions to launch R&D programs 

This yields a set of conditions that are optimal to launch the research and 

development program. These can be interpreted as trigger events or precursors of 

successful development programs. At this point, further analyses are plentiful. In 

particular, the effect of technical uncertainties can be investigated. In other words, the 

sensitivity of the early-investment boundary with respect to the expected performance 

associated with the aircraft, engine, or technology package may be analyzed.    

Overview of the entire methodology 

Having detailed the different steps of the proposed methodology, all the pieces of 

the puzzle can now be assembled together to yield the novel real option-based and game 

theoretic inspired methodology to evaluate research and development programs in the 

aerospace industry and beyond. This novel methodology is depicted in Figure 37 on the 

following page. 
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Figure 37: Decomposition of proposed methodology to evaluate R&D business cases 
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CHAPTER 7: EXPERIMENTAL PLAN - VERIFICATION 

 
Treat with utmost respect your power of forming opinions, for this 

power alone guards you against making assumptions that are contrary 
to nature and judgments that overthrow the rule of reason.  

Marcus Aurelius, Meditations, 3.9 

 

The purpose of the experimental plan is to propose a set of experiments to be 

carried out to either prove or disprove the hypotheses set forth to answer the research 

questions formulated in this document. At this stage, it becomes necessary to recognize 

that there are three types of hypotheses: method hypotheses, modeling hypotheses, and 

technical hypotheses. Method hypotheses propose a set of ordered procedures to 

investigate and resolve real-life problems faced by practitioners in the industry. These 

hypotheses must be validated using an industry relevant problem to ensure they 

adequately meet the need of practitioners. Modeling hypotheses propose generic 

mathematical representations of some aspects of real-life. These hypotheses must be 

verified to ensure that these mathematical representations are correct and that they model 

all pertinent aspects. Finally, technical hypotheses propose specific mathematical 

techniques to solve specific mathematical problems. For these hypotheses, a pure 

mathematical verification is usually sufficient to ensure they properly address and solve 

the identified problems. 

7.1 Preparing the verification for the real options analysis 

The purpose of the verification is to check whether the implementation of the real 

options evaluation methodology yields correct option prices. The similarity between real 

options and financial options enables the use of financial options to perform the 
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verification of the option pricer implementation: indeed, the option pricer can evaluate 

both types indifferently but the necessity of “a context” to price real options, the 

availability of mathematical models to price financial options, and finally, the prolific 

literature dealing with the pricing of financial options makes the verification of the latter 

more straightforward. In fact, real options analyses suffer from the fact that empirical 

testing is notoriously difficult1 because of the absence of publicly available data 

regarding the value of individual research and development programs.  

7.1.1 Verification process 

The implementation of the real options evaluation methodology proposed in this 

research is articulated around six successive steps: the Monte Carlo simulation under the 

physical probability measure, the risk neutralization by means of Esscher transform, the 

trajectory resampling using bootstrapping under the risk-neutral measure, the least 

squares regression of conditional expectations, and the early-exercise boundary 

construction. It is therefore easier to start the verification process by checking that the 

implementation of each individual step performs adequately in a variety of scenarios 

before moving on to the verification of the entire implementation.  

In this regard, the verification process follows the “bottom-up” approach of the 

definition-decomposition and verification-validation V-model diagram. The V-model 

diagram of Forsberg and Mooz [165] is a graphical representation used in systems 

engineering which depicts the activities related to the development life-cycle of complex 

systems. Several variants of the V-diagram have been developed over the years [166] 

                                                 

1 Lenos Trigeorgis during the panel discussion “Real-Options Application: Successes and Impediments” at 
the 18th International Conference on Real-Options: Theory meets Practice, Medellin, Colombia, July 2014  
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including the one highlighted in Figure 38 which describes adequately the software 

development process. The model starts with user needs on the upper left and ends with a 

user validated system on the upper right. In between, the development process is 

articulated first in a top-down approach starting with a requirements analysis with 

increasing granularity as development progresses, followed by the design, and leading to 

the implementation. The development process follows next a bottom-up approach as 

higher levels of assemblies and subsystems are successively verified, leading to a system-

level verification and finally ending with the actual operation of the system.  

 

 
Figure 38: V-Model for systems engineering 

In this context, the different steps of the proposed methodology, implemented as 

modules, are verified independently and a verification capability is thus developed to 

check their outputs. The verification capability requires different techniques and therefore 

several testing tools adapted to the module to be checked. Indeed, some modules yield a 

single number (option price, Esscher parameter), while some modules yield distribution 
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approximations (risk-neutral distribution), and some others yield two dimensional curved 

lines (early-exercise boundary). The wide spectrum of tests to be performed can be 

decomposed into five different cate

of distributions, statistical tests to check properties of distributions, similarity tests to 

check the shape of curves, numerical comparisons with published results to check 

quantitative outputs, and fin

check again quantitative outputs. The verification process is described in 

dashed arrows representing verifications of individual modules (subsystem

solid arrows representing verification of the complete implementation (system

7.1.2 Graphical tests 

One popular technique 

the quantile of one distribution with respect to the quantile of the other distribution. In 

such a plot, named a Q-Q plot, the q

inverse of the cumulative distribution function
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neutral distribution), and some others yield two dimensional curved 

exercise boundary). The wide spectrum of tests to be performed can be 

decomposed into five different categories: visual and graphical methods to check shape 

of distributions, statistical tests to check properties of distributions, similarity tests to 

check the shape of curves, numerical comparisons with published results to check 

quantitative outputs, and finally, numerical comparisons with established techniques to 

check again quantitative outputs. The verification process is described in 

dashed arrows representing verifications of individual modules (subsystem

solid arrows representing verification of the complete implementation (system

Figure 39: Verification Process 

Graphical tests – QQ Plots 

One popular technique to visually compare two distributions consists in plotti

the quantile of one distribution with respect to the quantile of the other distribution. In 

Q plot, the quantiles are values taken at regular intervals from the 

inverse of the cumulative distribution functions of these distributions. In mathematical 

neutral distribution), and some others yield two dimensional curved 

exercise boundary). The wide spectrum of tests to be performed can be 

gories: visual and graphical methods to check shape 

of distributions, statistical tests to check properties of distributions, similarity tests to 

check the shape of curves, numerical comparisons with published results to check 

numerical comparisons with established techniques to 

check again quantitative outputs. The verification process is described in Figure 39 with 

dashed arrows representing verifications of individual modules (subsystem-level) and 

solid arrows representing verification of the complete implementation (system-level).  

to visually compare two distributions consists in plotting 

the quantile of one distribution with respect to the quantile of the other distribution. In 

uantiles are values taken at regular intervals from the 

ns. In mathematical 
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terms, given two cumulative probability distribution functions F and G with associated 

quantile functions F-1 and G-1, the Q-Q plot shows the kth quantile of F against the kth 

quantile of G for a set of values of k varying between [0, 1]. When the two distributions 

are identical, the Q-Q plot graphs the quantile of one distribution with respect to the 

quantile of the same distribution which results in a perfectly straight line bisecting the (x, 

y) plan. It is therefore customary to add this straight bisecting line (following the 

equation y=x) to the Q-Q plot in order to provide a reference for comparisons.  

A Q-Q plot presents several characteristics enabling the comparison of 

distributions. First, this is a visual test providing a graphical representation of how two 

distributions agree or disagree and enabling a rapid detection of location, scale, 

dispersion, and skewness differences. Excess dispersion transpires as a plot steeper than 

the bisecting line. Skewness difference transpires as a plot resembling a curved “S” line. 

In some cases, location and scale differences can be detected using the intercept and 

slope of a linear regression between the plotted quantiles. Next, the Q-Q plot is not 

inherently linked to a specific type of distribution. Provided that the quantiles of the two 

distributions can be computed, the same Q-Q plot approach can be implemented. This 

property is used when the proposed methodology is tested for different stochastic 

processes and therefore different terminal distributions. Finally, another interesting aspect 

is that Q-Q plots can be used in a non-parametric environment as long as quantiles can be 

estimated. This is useful if one or both of the distributions do not have any closed-form 

expression for the inverse of the cumulative probability distribution function. In this case, 

simulation can be used to generate an empirical distribution function which is then 

numerically inversed. This property is used during the verification when dealing with 
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stochastic processes for which the terminal distribution is unknown or difficult to 

estimate.  

One challenge with the implementation of a Q-Q plot is the choice of the plotting 

positions. It is quite common to use regularly spaced quantiles and a natural choice given 

a sample of size n is to use k/n with k=1…n [167]. However, for probability measures 

with infinite support, the last quantile which represents the maximum value of the 

distribution can be infinite. This leads to issues in both plotting and estimating this last 

quantile. There seems to be little consensus on what is appropriate [168] [169] but ¸/B' + 1E with k=1…n seems to be typically used.  

The Q-Q graphical method is implemented in a spreadsheet environment with the 

help of VBA routines. This enables straightforward communications with the real options 

evaluation tool which is also implemented in a spreadsheet environment. In the following 

bullets, some features of the implementation are discussed:  

• Q-Q plots are used to compare an empirical distribution function with a known 

theoretical cumulative probability distribution function. The empirical distribution 

function results from a sampling algorithm, either Monte Carlo simulation or 

bootstrapping, and its inverse is never known. As for the theoretical cumulative 

probability distribution function, its inverse is either computed using published 

approximations, or simulation is used to generate an empirical distribution 

function which is then inverted.  

• Empirical distribution functions are constructed by sorting outputs from the 

sampling algorithm in a non-decreasing order (computing the order statistics). 

Once the ordering is done, the probability associated with each discrete output is 
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used to estimate the corresponding cumulative probability. For each output, this 

probability is estimated by adding-up the discrete probabilities associated with all 

outputs of smaller or equal value.  

• Quantiles cannot be computed at regular intervals unless some interpolation is 

used. To reduce the need for interpolations, quantiles are computed for each and 

every point of the empirical distribution. The last and “problematic” quantile (the 

100% quantile) is replaced by one estimated halfway between the largest two 

outputs. In other words, if xn-1 and xn are the two largest outputs in a sample of 

size n, then the nth quantile is given by 8=Y ��g��X�gR � 

• When the inverse of the theoretical cumulative probability distribution function 

does not have an approximation, simulation is performed to construct an empirical 

distribution function which is then inverted as explained previously. In this case, 

the quantiles may need to be interpolated in order to be computed at the same 

positions as those from the other distribution. A linear interpolation is thus used. 

 

A preliminary “heuristic” verification of the Q-Q plot implementation is provided 

in Table 23. The intent is to verify that the shapes of these plots are consistent with what 

is expected. For these tests, two datasets of numbers are generated, their quantiles are 

estimated, and the corresponding Q-Q plots are graphed. Exhibit (a) displays the Q-Q 

plot for two datasets from the exact same normal distribution. Exhibit (b) displays the Q-

Q plot for two datasets from normal distributions, albeit with a shifted mean. Exhibit (c) 

displays the Q-Q plot for two datasets from normal distributions, albeit with a different 

standard deviation. Finally, exhibit (d) displays the Q-Q plot for two different 
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distributions: one is a normal distribution while the other corresponds to a jump

stochastic process. The results are as expected: when the simulated and theoretical 

distributions are identical, the 

when the simulated distribution has a lower mean than the theoretical distribution, the Q

Q plot shift downwards as shown in (b); when the simulated distribution is less dispersed 

than the theoretical distribution, the Q

the simulated distribution is platykurtic and positively skewed with respect to the 

theoretical distribution, the Q

Table 23: Q-Q plots with 80,000 data points for various simulated and theoretical distributions

(a) Simulated normal (µµµµ

normal (µµµµ, σσσσ)  

 (µµµµ=3.33e-4, σσσσ=1.49e-2) 
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distributions: one is a normal distribution while the other corresponds to a jump

stochastic process. The results are as expected: when the simulated and theoretical 

distributions are identical, the Q-Q plot merges with the bisecting line as shown in (a); 

when the simulated distribution has a lower mean than the theoretical distribution, the Q

Q plot shift downwards as shown in (b); when the simulated distribution is less dispersed 

l distribution, the Q-Q plot is flatter as shown in (c); and finally when 

the simulated distribution is platykurtic and positively skewed with respect to the 

theoretical distribution, the Q-Q plot exhibits a flat “S” shape as in (d). 

Q plots with 80,000 data points for various simulated and theoretical distributions

 

µµµµ, σσσσ) and theoretical 

 

(b) Simulated normal (µµµµ, σσσσ

normal (20µµµµ, σσσσ)  

(µµµµ=3.33e-4, σσσσ=1.49e-2) 

distributions: one is a normal distribution while the other corresponds to a jump-diffusion 

stochastic process. The results are as expected: when the simulated and theoretical 

Q plot merges with the bisecting line as shown in (a); 

when the simulated distribution has a lower mean than the theoretical distribution, the Q-

Q plot shift downwards as shown in (b); when the simulated distribution is less dispersed 

Q plot is flatter as shown in (c); and finally when 

the simulated distribution is platykurtic and positively skewed with respect to the 

Q plots with 80,000 data points for various simulated and theoretical distributions 

 

σσσσ) and theoretical 
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(c) Simulated normal (µµµµ

normal (µµµµ, 2σσσσ) 

(µµµµ=3.33e-4, σσσσ=1.49e-2) 

 

7.1.3 Statistical tests –

Another popular technique to test the equality of continuous and one

probability distributions is the Kolmogorov

to compare a sample with a reference probability 

It quantifies the distance between the empirical distribution function of the sample and 

the cumulative distribution function of the reference distribution, or between the 

empirical distribution functions of two samp

empirical distribution function (for the sample of size 

distribution function, or if 

(for the two samples of si

largest difference between the two functions.

Å F? = sup�∈ℝ  |8?F?,\ = sup�∈ℝ  |8
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µµµµ, σσσσ) and theoretical 
(d) Simulated normal (µµµµ, σσσσ

distribution corresponding to jump

process (µµµµ, σσσσ, λλλλ, γγγγ, δδδδ)  

(µµµµ=3.33e-4, σσσσ=1.49e-2, λλλλ=1.0, 

– Kolmogorov-Smirnov test 

Another popular technique to test the equality of continuous and one

probability distributions is the Kolmogorov-Smirnov test. This statistical test may be used 

to compare a sample with a reference probability distribution or to compare two samples. 

It quantifies the distance between the empirical distribution function of the sample and 

the cumulative distribution function of the reference distribution, or between the 

empirical distribution functions of two samples. If 8? and G represent respectively the 

empirical distribution function (for the sample of size n) and the cumulative probability 

distribution function, or if 8? and É\ represent the two empirical distribution functions 

(for the two samples of sizes n and m), then the distance F? or F?,\ 

largest difference between the two functions. 

?B0E − ÉB0E| ,      �9� �ℎ- 9'- .)/1*- 2).- 8?B0E − É\B0E| ,   �9� �ℎ- ��9 .)/1*-. 2).-¦ 

 

σσσσ) and theoretical 

distribution corresponding to jump-diffusion 

=1.0, γγγγ=-0.08, δδδδ=0.4) 

Another popular technique to test the equality of continuous and one-dimensional 

Smirnov test. This statistical test may be used 

distribution or to compare two samples. 

It quantifies the distance between the empirical distribution function of the sample and 

the cumulative distribution function of the reference distribution, or between the 

represent respectively the 

) and the cumulative probability 

represent the two empirical distribution functions 

 in Eq. 24 is the 

¦ Eq. 24 
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Intuitively, this distance should be small if the two distributions are equal. This distance 

is used next to compute the Kolmogorov-Smirnov test statistic. The null hypothesis is 

that the sample is drawn from the reference distribution (in the one-sample case) or that 

the two samples are drawn from the same distribution (in the two-sample case). If the null 

hypothesis is true, then the test statistic follows the Kolmogorov-Smirnov distribution. 

Following traditional hypothesis testing, the null hypothesis is rejected at a significance 

level ¯ if the Kolmogorov-Smirnov test statistic is greater than the quantity in Eq. 25 

with 2B¯E computed using tables or the Kolmogorov-Smirnov distribution. For large 

samples, the critical values at the 1% and 5% significance levels are given by  2B0.01E =1.63 and 2B0.05E = 1.36. 

Å G� = F? ∙ √' > 2B¯E, �9� �ℎ- 9'- .)/1*- 2).-G� = F?,\ ∙ Ï ' ∙ /' + / > 2B¯E,      �9� �ℎ- ��9 .)/1*-. 2).-¦ Eq. 25 

The Kolmogorov-Smirnov statistical test is implemented in a spreadsheet 

environment with the help of VBA routines which enables straightforward 

communications with the real options evaluation tool which is also implemented in a 

spreadsheet environment. In the following bullets, some features of the implementation 

are discussed:  

• When a closed-form expression – or an approximation – of the cumulative 

probability distribution function of the reference distribution exists, then a one-

sample Kolmogorov-Smirnov test is performed.  

• When there is no closed-form expression – or approximation – of the cumulative 

probability distribution function for the reference distribution, then the reference 
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distribution is constructed using Monte Carlo simulations. A two-sample 

Kolmogorov-Smirnov test is then performed. 

• In some cases, the estimation of the reference cumulative probability distribution 

function is computationally intensive. In these cases, the sample to be tested is 

purposefully down-sampled and the resulting empirical distribution function is 

constructed using the new reduced-size sample. The new down-sampled empirical 

distribution coincides exactly with the original empirical distribution at each point 

of the new smaller sample. The Kolmogorov-Smirnov test statistic is computed 

using a value of n corresponding to the original (larger) sample size so as not to 

skew the estimated p-value. 

• The power of the Kolmogorov-Smirnov test (rejecting the null hypothesis when it 

is false) increases with the sample size, as suggested by the formulation of the test 

statistic (square root of sample size factor). Therefore, the Kolmogorov-Smirnov 

tests are performed on large samples always exceeding 10,000 points, and the 

critical value retained at a significance level of 5% is given by 2B0.05E = 1.36 

• In order to estimate the p-value associated with these tests, the asymptotic 

behavior of the statistic is used. It is shown to follow the Kolmogorov-Smirnoff 

distribution given in Eq. 26. This distribution is expressed as an infinite sum of 

exponential terms. The contribution of the kth terms is in -=R��
 and thus decreases 

rapidly. In the numerical implementation, the infinite series is thus approximated 

by its first thirty terms.  

:Bp ≤ 0E = 1 − 2 ;B−1E�=Y ∙ -=R�����
�@Y  Eq. 26 
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A preliminary verification of the implementation of the Kolmogorov-Smirnov test 

is provided in Table 24. The intent is to verify the estimation of the p-values. The 

implementation is compared to an online calculator for the two-sided two-sample test 

provided by Wessa [170] and based on the ks.test module of the stat package available for 

the R statistical language. In this study, two datasets of uniformly distributed random 

numbers are generated and the Kolmogorov-Smirnov test is run to check whether the two 

datasets are sampled from the same distribution. The first test is performed with two 

identical datasets ensuring a zero distance. The last test is performed with two shifted 

datasets ensuring a large distance. All other tests are performed with two distinct datasets 

sampled from the same uniform distribution. The results are in agreement over the entire 

range of distances. 

Table 24: Kolmogorov-Smirnov statistical test implementation 

Sample size (n, m) 

Test distance F?,\ 
1000,1,000 

0 

1000,1000 

0.02700 

1000,1000 

0.02900 

1000,1000 

0.030000 

1000,1000 

0.03600 

1000,1000 

0.11400 

Reference p-value 

Computed p-value 

1 

1 

0.85929 

0.85929 

0.79439 

0.79439 

0.75910 

0.75909 

0.53605 

0.53605 

4.5388e-06 

4.5387e-06 

 

7.1.4 Statistical tests – Testing the mean using z-tests and t-tests 

Unlike the Kolmogorov-Smirnov test which enables the comparison of 

distributions as a whole, the z-test and the t-test are two popular tests traditionally used to 

perform statistical inference regarding the mean of a population using the mean of a 

sample drawn from this population. Both tests are very similar but rely on a slightly 

different set of assumptions. 
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When one knows the standard deviation σ of the population from which the 

sample is drawn, the z-test is used [171]. The null hypothesis for this test is the equality 

between the population mean and a hypothesized mean. The sample of size n has a mean !̅ which is standardized to yield the z-statistic defined in Eq. 27. This statistic follows a 

standard normal distribution under the null hypothesis. Intuitively, the further away the 

sample mean is from the hypothesized mean, the less likely the null hypothesis is true. 

Following traditional two-sided hypothesis testing, the null hypothesis is rejected at a 

significance level ¯ if the absolute value of the z-test statistic is greater than the quantity �³ RÑ  computed using tables of the standard normal distribution. The critical values for 

two-sided tests at the 1% and 5% significance levels are given by  �A.AAÒ = 2.575 and �A.ARÒ = 1.960. 

� = !̅ − !" √'Ñ  
Eq. 27 

Strictly speaking, the use of the z-test for hypothesis testing requires that the 

standard deviation of the sample be known. In practice, σ is rarely known and the 

standard deviation is often replaced by the sample estimate of the standard deviation 

provided the sample size is large (large-sample approximation) [171]. This leads to 

results (p-value and critical value) that are good, yet approximate. In this case, a large 

sample size is usually understood to be greater than 30.  

When one does not know the standard deviation σ of the population from which 

the sample is drawn, the t-test is used provided that the population distribution is normal 

[171]. The null hypothesis for this test is the equality between the population mean and 

the hypothesized mean. The sample of size n has a mean !̅ and a standard deviation .̅, 



www.manaraa.com

197 

which are both used to define the Student’s t-statistic defined in Eq. 28. This statistics 

follows the Student’s t-distribution [172] under the null hypothesis. Again, the further 

away the sample mean is from the hypothesized mean, the less likely the null hypothesis 

is true. Following traditional two-sided hypothesis testing, the null hypothesis is rejected 

at a significance level ¯ if the absolute value of the t-test statistic is greater than the 

critical value �³ RÑ ,?=Y computed using t-distribution tables.  

� = !̅ − !. √'Ñ  
Eq. 28 

Strictly speaking, the use of Student’s t-table for hypothesis testing requires that 

the sample be drawn from a normal distribution. In practice, the t-test yields good yet 

approximate results (p-value and critical value) even if the normality of the distribution 

cannot be established, as long as the distribution is symmetric and approximately bell 

shaped [171]. Probability plots and box-and-whiskers graphs may be used to determine 

quickly if the distribution satisfies this loose constraint.  

In this research, both the z-test and the t-test are used to verify the equality 

between the average outcome of repeated experiments and the expected theoretical value. 

Usually, the distributions from which the sample is extracted are unknown and so are the 

associated standard deviations. Therefore, the verification tests are merely 

approximations of the z-tests and t-tests using accepted practices. To use both tests, most 

of the experiments carried out in this research are repeated thirty times to ensure that the 

large-sample approximation is met and box-and-whiskers plots are used to ensure 

reasonable symmetry. The z-test and the t-test are implemented in the spreadsheet 

environment using native Microsoft Excel functions to estimate critical values and p-

values.  
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7.1.5 Similarity tests – Hausdorff distance 

The purpose of similarity tests is to check whether the approximation of a curve is 

close-enough to either the theoretical curve if it is known, or another approximation of 

the curve obtained through established procedures. Assessing the similarity between two 

curves seems relatively straightforward when looking at them, but defining an 

appropriate metric to describe this similarity is more difficult. The field of computer 

graphics is surveyed in order to find metrics that are used for digital shape recognition 

and other similar endeavors. It seems that most of the automated shape recognition 

algorithms revolve around the estimation of a distance between shapes [173]. There are 

several definitions for this distance and two popular ones in computational geometry are 

the Hausdorff distance and the Fréchet distance [174] given respectively in Eq. 29 and 

Eq. 30. The Hausdorff distance ÕÖ between two curves ×Y and ×R is expressed as the 

maximum of the two directed Hausdorff distances Õ×�,×�  and Õ×�,×�  (due to the asymmetry 

of maximin functions), computed using the Euclidian norm. The directed Hausdorff 

distance is the greatest of all the distances from a point in one curve to the closest point in 

the other curve. The Fréchet distance ÕØ also uses the Euclidian norm but introduces two 

reparameterizations # and Ù of the curves ×Y and ×R respectively. Without loss of 

generality, let’s assume that the reparameterization support is the segment [0, 1]. The 

Fréchet distance is then defined as the infimum over all reparameterizations # and Ù of 

the maximum distance over all � ∈ b0, 1c measured between ×Ys#B�Et and ×RsÙB�Et. A 

classical interpretation of the Fréchet distance is the minimum length of a leash required 

to connect a dog and its owner walking two separate paths without backtracking (dubious 

for a dog). 
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ÕÖ = maxsÕ×�,×� , Õ×� ,×�t  �(�ℎ Õ×�,×� = max�∈×� ÜminÝ∈×�‖0 − P‖ß   Eq. 29 

ÕØ = infà,á Ü max�∈bA,Ycâ×Ys#B�Et − ×RsÙB�Etâß Eq. 30 

The Fréchet distance is regarded as a more robust metric but is hard to estimate. 

On the contrary, the Hausdorff distance is widely used and easier to compute. Alt et al. 

[175] show that for closed convex curves, the Hausdorff distance equals the Fréchet 

distance. They also prove that for κ-straight curves, the Fréchet distance between two 

such curves is bounded by ã + 1 times their Hausdorff distance. Since this research aims 

at quantifying the distance between early-exercise boundaries which are continuous and 

monotonous functions, the κ-straight property is verified (these are curves with increasing 

chord [176]) and therefore the Fréchet and Hausdorff distance are closely related. For this 

reason, the simpler Hausdorff distance is retained. 

The Hausdorff distance calculation is implemented in a spreadsheet environment 

with the help of VBA routines which enable direct communications with both the real 

options evaluation tool and the finite-difference partial differential equation solver to be 

described next. A preliminary verification of this implementation is provided in Table 25 

using a simplified example displayed in the left-most cell. In this example, the Hausdorff 

distance is computed between a curve ×Y  made of two points and a curve ×R made of 

three points. 
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Table 25: Hausdorff distance implementation verification

7.1.6 Comparison tests 

The purpose of these comparisons is to provide a reference value for real options 

featuring early-exercise possibilities and to provide a

boundaries.  Unfortunately, there are only few techniques that can both price American 

options and locate early-

equations (and relevant boundary conditions) with a finite

technique achieving these two objectives when the partial differential equations have no 

known analytical solutions 

Finite-difference methods are widely used numerical schemes that enable the 

pricing of European as well as Bermudan and American options. Finite

methods were first proposed by Schwartz 

to solve the Black-Scholes partial differential equation by discretizing the time and asset

price space.  Boundary conditions at the extremities of the ti

enable the estimation of the option price which is then propagated throughout the mesh 

using the finite-difference approximation of the partial differential equation. The 

boundary conditions are usually set at the maturity of the op
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: Hausdorff distance implementation verification 

 

Theoretical Discrete 

Hausdorff Distance 
¦ Õ×�,×� %Õ×� ×� % √

Computed Discrete 

Hausdorff Distance 
 

rison tests – Solving PDE with finite-difference m

The purpose of these comparisons is to provide a reference value for real options 

possibilities and to provide a reference for their early

boundaries.  Unfortunately, there are only few techniques that can both price American 

-investment boundaries [177] [178]. Solving p

equations (and relevant boundary conditions) with a finite-difference scheme is a popular 

technique achieving these two objectives when the partial differential equations have no 

known analytical solutions [179].  

difference methods are widely used numerical schemes that enable the 

pricing of European as well as Bermudan and American options. Finite

methods were first proposed by Schwartz [180] and Brennan and Schwartz 

Scholes partial differential equation by discretizing the time and asset

price space.  Boundary conditions at the extremities of the time and asset

enable the estimation of the option price which is then propagated throughout the mesh 

difference approximation of the partial differential equation. The 

boundary conditions are usually set at the maturity of the option, for an extremely large 

1√10ä → ÕÖ % √10 

3.162 

difference methods 

The purpose of these comparisons is to provide a reference value for real options 

reference for their early-exercise 

boundaries.  Unfortunately, there are only few techniques that can both price American 

artial differential 

difference scheme is a popular 

technique achieving these two objectives when the partial differential equations have no 

difference methods are widely used numerical schemes that enable the 

pricing of European as well as Bermudan and American options. Finite-difference 

ennan and Schwartz [181] [182]  

Scholes partial differential equation by discretizing the time and asset-

me and asset-price mesh 

enable the estimation of the option price which is then propagated throughout the mesh 

difference approximation of the partial differential equation. The 

tion, for an extremely large 



www.manaraa.com

201 

value of the underlying asset, and for an extremely small value of the underlying asset. 

Another interesting aspect of solving partial differential equations using a finite-

difference scheme is the ability to directly generate the early-exercise boundary. 

Generating the early-investment boundary is done by checking if the early-exercise 

privilege is exercised at each and every node in the time and asset-price mesh. The 

boundary is approximated at each time cross-section by looking at neighboring nodes that 

have different exercise policies.  

The solution of the Black-Scholes partial differential equation using a finite-

difference scheme is implemented in a spreadsheet environment with the help of VBA 

routines which enable direct communications with the real options evaluation tool. In the 

following bullets, some features of the implementation are discussed:  

• There are several ways to express finite-differences in the time and asset-price 

mesh: forward differences, backward differences, and central differences leading 

to respectively the explicit, implicit, and Crank-Nicolson finite-difference 

schemes. Because of potential numerical instabilities with explicit schemes and 

the extra complexity of Crank-Nicolson schemes, the implicit numerical scheme 

is used.  

• Boundary conditions must be defined at the border of the time and space grid. For 

option valuation, boundary conditions are usually defined along three boundaries: 

at the expiration of the option when the payoff is known, whenever the underlying 

has a value of zero, and whenever the underlying has an infinite value. It is 

nevertheless impractical to use a boundary at infinity. As a result, it is customary 

to replace this boundary with an approximate boundary positioned far away from 
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points of interest, i.e. far away from the near-field where the option valuation will 

take place in practice. Kangro and Nicolaides [183] and later Windcliff et al. 

[184] report that, given a tolerance �9*, given a volatility σ, given a maturity T, 

using a maximum value �\^� for the underlying asset at least greater than the 

quantity shown in Eq. 31 is sufficient. 

�\^� > G-åæR|çè (�éê)|√r  often replaced in practice by �\^� >  G-¨å√r Eq. 31 

To compute finite-differences, a discretization of time and space is required. The 

granularity of this discretization has direct implications on the accuracy of the 

solutions provided. The proper level of discretization is the one that yields the 

target accuracy while using the minimum number of mesh-points. APPENDIX I 

discusses the discretization choice and the final discretization is summarized in 

Table 26. 

Table 26: Grid selection for finite-difference numerical scheme 

Space dimension discretization 500 Steps 

Time dimension discretization 400 Steps 

 

The verification of this implementation is articulated around two steps. First, the 

finite-difference scheme is used to price European options for which exact analytical 

solutions are known. The verification is performed for both put and call options, for 

different spot to strike ratios, different volatilities, different risk-free interest rates, 

different dividend yields, and different maturities as highlighted in Table 27. A list of  

240 test cases is provided in APPENDIX J in a table format while a more synthetic view 

representing the distribution of the relative difference is provided in Figure 40. 
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Figure 40: Relative difference distribution for various test cases 

(finite-difference scheme compared to Black-Scholes solution) 

 

 Min Max 

Spot to 

strike 
0.8 1.2 

Maturity 

(days) 
180 720 

Volatility 20% 40% 

Dividend 

yield 
0% 4% 

Risk free 

rate 
2% 8% 

Table 27: Range for input 

parameters 

 

The finite-difference scheme is used next to price American options for which the 

verification task is more involved since there is no known practical analytical solution. 

The option prices for different spot prices, different risk-free rates, different volatilities, 

and different maturities are therefore compared to results published in the literature. 

Results reported by Barone-Adesi and Whaley [185] are used and comparisons are 

provided in Table 28.  

The results for both European and American options are accurate across the whole 

spectrum of test-cases. For European options, the relative difference does not exceed a 

tenth of a percent in ninety five percent of cases. For American options, the magnitude of 

the absolute error remains minuscule, never exceeding one percent of the option price. 

Deep out-of-the-money option price calculations seem to be less accurate but these 

options are of little interest in this research. The implementation of the finite-difference 

numerical scheme is therefore successful.  
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Table 28: Finite-difference scheme results for American call and put options 

Comparison (a)    American Call Option American Put Option 

Option Parameters (b) 
Spot  
Price 

Barone-Adesi 
& Whaley (c) 

Finite-
difference 
Method 

Diff. 
Barone-Adesi 
& Whaley (c) 

Finite-
difference 
Method 

Diff. 

K=100, r=0.08, 
 σ=0.20, T=0.25 

80 
90 
100 
110 
120 

0.05 
0.85 
4.44 
11.66 
20.90 

0.05 
0.85 
4.44 
11.66 
20.90 

0.00 
0.00 
0.00 
0.00 
0.00 

20.00 
10.22 
3.55 
0.79 
0.11 

20 
10.223 
3.547 
0.79 
0.114 

0.00 
0.00 
0.00 
0.00 
0.00 

K=100, r=0.12, 
σ=0.20, T=0.25 

 (d)    

80 
90 
100 
110 
120 

0.07 
1.02 
4.96 
12.50 
21.85 

0.07 
1.02 
4.97 
12.50 
21.85 

0.00 
0.00 
0.01 
0.00 
0.00 

20.00 
10.01 
3.21 
0.68 
0.10 

20.00 
10.03 
3.21 
0.66 
0.09 

0.00 
0.02 
0.00 
-0.02 
-0.01 

K=100, r=0.08,  
σ=0.40, T=0.25 

80 
90 
100 
110 
120 

1.29 
3.82 
8.35 
14.79 
22.71 

1.29 
3.82 
8.35 
14.79 
22.71 

0.00 
0.00 
0.00 
0.00 
0.00 

20.59 
12.95 
7.46 
3.95 
1.94 

20.59 
12.96 
7.46 
3.95 
1.94 

0.00 
0.01 
0.00 
0.00 
0.00 

K=100, r=0.08, 
 σ=0.20, T=0.50 

80 
90 
100 
110 
120 

0.41 
2.18 
6.50 
13.42 
22.06 

0.42 
2.18 
6.49 
13.42 
22.06 

0.01 
0.00 
-0.01 
0.00 
0.00 

20.00 
10.75 
4.77 
1.74 
0.53 

20.00 
10.76 
4.77 
1.74 
0.53 

0.00 
0.01 
0.00 
0.00 
0.00 

   (a)   Comparison is made with commodity option prices for which a cost of carry q = 0.04 is used  

   (b)   K = strike; r = riskless rate of interest; σ = standard deviation of returns; T = time to expiration 
   (c)   Barone-Adesi and Whaley implementation of the finite-difference method [185].  
   (d)   The author wishes to thank Giovanni Barone-Adesi for providing corrected numbers for this specific case  

   

7.2 Preliminary testing and lessons learned 

Preliminary testing is performed prior to entering the detailed verification process 

for two reasons: the first is to set values for some of the technical parameters used in the 

proposed methodology; the second is to iron out glitches and determine whether 

adjustments or improvements to the proposed methodology are warranted.  

7.2.1 Variability of results 

Preliminary testing indicates that option prices are quite accurate (usually within 

5%) but the early-exercise boundary seems to exhibit some quite severe changes of shape 
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in between repeated experiments.  These changes in the shape of the early-exercise 

boundary in between repeated experiments are due to the variability of the continuation 

value estimation at intermediate steps in the algorithm. There is therefore a need to 

decrease this variability and this leads to a new and rather unexpected research question: 

Research Question 1.2.2 – Reducing variability of results 

How can the variance of results obtained from the least-squares Monte Carlo simulation 

be reduced to yield consistent real option price estimations and consistent early-exercise 

boundary shapes? 

7.2.2 Pooling sample of returns before bootstrap resampling  

Testing is first performed to check the bootstrap resampling using the sampling 

wheel algorithm. The purpose of the bootstrap resampling is to generate new trajectories 

from a sample of returns. These trajectories induce empirical distributions of returns at 

each time step which can be compared to known reference distributions of returns.  

Preliminary tests using Q-Q plots comparing these distributions indicate that some 

distortion occurs, especially in the tails of the distributions. When the stochastic process 

under the physical probability measure is significantly different from the process under 

the equivalent martingale measure (i.e. the drift rates are significantly different), the non-

parametric Esscher transform must heavily tilt the empirical distribution of returns. It is 

achieved by applying non-uniformly distributed weights to each of the returns within 

each sample of returns. This means that some of the returns have a large weight attached 

to them while some others have a small weight attached to them. During the bootstrap 

resampling, returns with higher weights are more likely to be drawn. Therefore, one 
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specific return or several

over again. This translates into the 

Q plots in exhibit (b), exhibit (c), and exhibit (d) of 

empirical distribution under the equivalent martingale measure were indeed 

reweighted so as to tilt the distri

Table 29: Q-Q plots for the return distribution induced by 

geometric Brownian motions

(a) GBM with rf =0.05, 

σσσσ=0.10, T=1 

(c) JD with rf =0.05, µµµµ=0.07, q=0.02, 

λλλλ=4.00, γγγγ=-0.08, δδδδ=0.40,

206 

several returns with relatively larger weights may be drawn over and 

over again. This translates into the step-like structure apparent in the lower 

Q plots in exhibit (b), exhibit (c), and exhibit (d) of Table 29. The lower tails of the 

empirical distribution under the equivalent martingale measure were indeed 

reweighted so as to tilt the distribution and achieve a lower drift rate. 

return distribution induced by bootstrap resampling of 

s Merton jump diffusion processes 

 

, µµµµ=0.07, q=0.02, (b) GBM with rf =0.05, µµµµ=0.25, q=0.02

σσσσ=0.30, T=1 

 

=0.07, q=0.02, σσσσ=0.10, 

=0.40,  T=1 

(d) JD with rf =0.05, µµµµ=0.07, q=0.02, 

λλλλ=4.00, γγγγ=-0.08, δδδδ=0.40, T=1

returns with relatively larger weights may be drawn over and 

lower tails of the Q-

The lower tails of the 

empirical distribution under the equivalent martingale measure were indeed heavily 

bootstrap resampling of two cases of 

 

=0.25, q=0.02, 

 

=0.07, q=0.02, σσσσ=0.10, 

=0.40, T=1 
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To ensure that a specific return is not drawn repetitively, two solutions are 

available: ensure that no return has a relative weight so large that it is bound to be drawn 

over and over again; or ensure that many returns have large relative weights therefore 

diluting the possibility of drawing one particular return over and over again. 

Implementing the second solution seems relatively straightforward: in order to avoid 

repetitive sampling of the same return, sampling m returns out of n returns with m 

significantly smaller than n ensures that the likelihood of repetitive sampling is reduced. 

In practice, this is implemented by first pooling return samples from different time cross-

sections, then by performing the change of measure with the non-parametric Esscher 

transform over this larger sample, and finally by sampling from this larger risk-

neutralized sample of returns. This leads to a new hypothesis formulated below: 

Hypothesis 1.1.3.1 – Pooling returns to increase size of sample to bootstrap 

Pooling samples of returns from different time cross-sections or increasing the relative 

size from the original sample with respect to the bootstrap sample limits the repetitive 

sampling of the same highly-weighted return values. 

For the same test case, Table 30 highlights the improvement in the quality of the 

resampled distribution as the number of pooled samples is increased from a single sample 

to six samples. It seems that most artifacts of the resampling disappear when four or more 

samples of returns are pooled together.  Therefore, the resampling ratio is set to four for 

the remaining of this dissertation. 
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Table 30: Q-Q plots with increasing pooling number

(a) No pooling - Single sample

(c) Pooling – Three samples

(e) Pooling – Five samples

 

Another technique to achieve the same result is to perform the bootstrap 

resampling using a larger original sample: i

208 

Q plots with increasing pooling number 

 
Single sample (b) Pooling – Two samples

 
Three samples (d) Pooling – Four samples

 
Five samples (f) Pooling – Six samples

Another technique to achieve the same result is to perform the bootstrap 

resampling using a larger original sample: instead of sampling n returns from 

 
Two samples 

 
Four samples 

 
 

Another technique to achieve the same result is to perform the bootstrap 

returns from an original 
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sample of observations of size n, the sampling can also be done using an original sample 

of size m with m much larger than n. Using the conclusion above, selecting an original 

sample of size 4n seems sufficient to remove artifacts in the new distribution. This has 

same effective results but will prove useful later when the case of compound options is 

investigated: indeed, the stationarity assumption invoked to justify the bootstrap 

resampling is no longer valid for the nested option price process and consequently 

bootstrapping from several different time cross-sections would prove problematic.  

In any case, the two techniques have similar intent and similar results. The benefits are 

highlighted in Table 30 and a heuristic argumentation is invoked to both justify that 

resampling from a larger sample leads to fewer repetitions and to verify this hypothesis. 

7.2.3 Antithetic variates, moment matching, and control variates 

Testing is performed next to check the accuracy of the valuation of American 

options. The purpose is to quickly check whether the least-squares Monte Carlo 

algorithm can be used in the proposed methodology without any modification or 

improvements. Preliminary tests are performed for different American call options on 

underlying assets following a geometric Brownian motion. Option prices, confidence 

intervals, as well as early-exercise premia are reported in Table 31. These tests indicate 

that option prices are reasonably accurate but there is significant variability in the prices 

obtained from repeated experiments. This yields early-exercise premia (i.e. difference 

between the American option price and the corresponding European option price) which 

are not statistically significant in some deep out-of-the money options. Besides, the 

variability yields wide confidence intervals, particularly for deep out-of-the money 

options: the relative width of some confidence intervals exceeds seven percent of the 



www.manaraa.com

210 

option price. In order to curb some of this variability, several variance reduction 

techniques have been developed over the years including the use of antithetic variates, 

moment matching, and control variates which are discussed in the following paragraphs. 

Table 31: American call option price and early-exercise premium for underlying assets following a 

geometric Brownian motion 

 Finite-Difference Method Proposed Simulation Method 

Test 
Case 

European 
Option 
Price 

American 
Option 
Price 

Early-
Exercise 
Premium 

American 
Option 
Price 

Standard 
Error 

Relative 
Error 

Early-
Exercise 
Premium 

Confidence 
Interval 

Conf. 
Interval 
Relative 
Width 

S=0.8 

µ=0.1 

q=0.05 

σ=0.2 

0.00843 0.00867 0.00024 0.00864 0.00016 -0.3% 0.00021
 

0.0083 -0.0089 7.0% 

0.00843 0.00867 0.00024 0.00886 0.00016 2.2% 0.00043* 0.0086 -0.0092 7.1% 

0.00843 0.00867 0.00024 0.00861 0.00016 -0.7% 0.00018
 

0.0083 -0.0089 7.2% 

0.00843 0.00867 0.00024 0.00837 0.00015 -3.4% -0.00006
 

0.0081 -0.0087 6.8% 

0.00843 0.00867 0.00024 0.00869 0.00016 0.2% 0.00026
 

0.0084 -0.0090 7.1% 

S=0.9 

µ=0.1 

q=0.05 

σ=0.4 

0.09163 0.09365 0.00202 0.09267 0.00051 -1.1% 0.00104* 0.0917 -0.0937 2.1% 

0.09163 0.09365 0.00202 0.09345 0.00048 -0.2% 0.00183* 0.0925 -0.0944 2.0% 

0.09163 0.09365 0.00202 0.09371 0.00048 0.1% 0.00208* 0.0928 -0.0946 2.0% 

0.09163 0.09365 0.00202 0.09375 0.00050 0.1% 0.00212* 0.0928 -0.0947 2.1% 

0.09163 0.09365 0.00202 0.09403 0.00051 0.4% 0.00240* 0.0930 -0.0950 2.1% 

S=1.0 

µ=0.1 

q=0.05 

σ=0.2 

0.06330 0.06655 0.00324 0.06729 0.00027 1.1% 0.00399* 0.0668 -0.0678 1.6% 

0.06330 0.06655 0.00324 0.06651 0.00026 -0.1% 0.00321* 0.0660 -0.0670 1.6% 

0.06330 0.06655 0.00324 0.06652 0.00026 0.0% 0.00322* 0.0660 -0.0670 1.5% 

0.06330 0.06655 0.00324 0.06790 0.00027 2.0% 0.00459* 0.0674 -0.0684 1.6% 

0.06330 0.06655 0.00324 0.06731 0.00026 1.1% 0.00401* 0.0668 -0.0678 1.5% 

S=1.1 

µ=0.1 

q=0.05 

σ=0.4 

0.19581 0.20170 0.00589 0.20043 0.00051 -0.6% 0.00462* 0.1994 -0.2014 1.0% 

0.19581 0.20170 0.00589 0.20117 0.00052 -0.3% 0.00536* 0.2001 -0.2022 1.0% 

0.19581 0.20170 0.00589 0.19945 0.00052 -1.1% 0.00364* 0.1984 -0.2005 1.0% 

0.19581 0.20170 0.00589 0.20185 0.00054 0.1% 0.00604* 0.2008 -0.2029 1.0% 

0.19581 0.20170 0.00589 0.20019 0.00052 -0.7% 0.00439* 0.1992 -0.2012 1.0% 

S=1.2 

µ=0.1 

q=0.05 

σ=0.2 

0.18839 0.20502 0.01663 0.20555 0.00021 0.3% 0.01716* 0.2051 -0.2060 0.4% 

0.18839 0.20502 0.01663 0.20387 0.00022 -0.6% 0.01548* 0.2034 -0.2043 0.4% 

0.18839 0.20502 0.01663 0.20510 0.00020 0.0% 0.01671* 0.2047 -0.2055 0.4% 

0.18839 0.20502 0.01663 0.20500 0.00020 0.0% 0.01661* 0.2046 -0.2054 0.4% 

0.18839 0.20502 0.01663 0.20468 0.00021 -0.2% 0.01628* 0.2043 -0.2051 0.4% 

Call option price on an asset following a geometric Brownian motion. Simulation performed with 30,000 
original trajectories, and 30,000 resampled trajectories.  

S = asset price, µ = drift rate, q = dividend yield, σ = volatility, 
K = strike price = 1,  rf = riskless rate of interest = 2%, T = maturity = 1 year 

Early-exercise premia with asterisks (*) denote values significantly different from zero 
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Antithetic variates 

The antithetic variates concept attempts to reduce variance by observing that if a 

random variable U is uniformly distributed over the unit interval, then the random 

variable 1-U is also uniformly distributed on the unit interval [131]. When performing 

Monte Carlo simulations, it is customary to use the inverse transform method whereby a 

random variable Z having probability distribution F is simulated by first sampling a 

uniform distribution and then by applying the inverse transform F-1.  Therefore, if 

trajectories are constructed from the random variable U and the inverse function F-1, then 

another trajectory can be constructed with the random variable 1-U and the same inverse 

function F-1. The two are antithetic in that an abnormally large (small) value of U will be 

immediately counterbalanced with an abnormally small (large) value of 1-U. In 

mathematical terms, the antithetic variates method is useful if, for a random variate Z 

with independent observations �� and antithetic observations ��{, the inequality in Eq. 32 

holds: 

�)� Z�Y + �Y{2 [ < �)� ��Y + �R2 � Eq. 32 

Which by virtue of the independence of the observations Zi yields Eq. 33: 

Var(�Y + �Y{) < 2�)�(�Y) Eq. 33 

Decomposing the variance yields Eq. 34: 

�)�(�Y + �Y{) % �)�(�Y) + �)�(�Y{) + 279,(�Y, �Y{) 

�)�(�Y + �Y{) % 2 �)�(�Y) + 279,(�Y, �Y{) 
Eq. 34 

And the useful condition is expressed as shown in Eq. 35: 

79,(�Y, �Y{) < 0 ⟺ 79,(8=Y(5), 8=Y(1 − 5)) < 0 Eq. 35 
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 In other words, if the negative dependence between the inputs produces negative 

correlation between the outputs, then the antithetic variates method will reduce the 

variance of the estimator to be found. The antithetic variates method is implemented in 

the proposed methodology and yields improvement in the reduction of the variance of the 

option price. This is however not sufficient. Besides, antithetic variates do not usually 

work well with quasi-Monte Carlo simulations and this might become problematic if 

quasi-random numbers are used in lieu of pseudo-random numbers. 

Moment matching 

Starting from the observation that derivative pricing consists in determining the 

value of a derivative with respect to the value of the underlying asset, the moment 

matching method aims at reducing the variance of the price estimator by improving the 

simulation of the underlying asset evolution. This is achieved by ensuring that 

experimental samples produced at various time cross-sections exhibit accurate statistical 

moments and if not, by adjusting trajectories so that the empirical moments perfectly 

match their theoretical values. Indeed, if ��@Y..? are independent random variables used to 

drive the simulations, there is little chance that the sample moments resulting from the 

sampling of the random variables ��@Y..? at each time step exactly matches the expected 

value �̅. Focusing only on the first moment, let’s introduce �ì  as the experimental first 

moment (mean) as shown in Eq. 36 (time dependency has been omitted for clarity):   

�ì % 1' ; ��
?

�@Y  Eq. 36 

Trajectories can then be corrected at each time step by adjusting the realization of 

the random variable �� and creating a new random variable �íî  as shown in Eq. 37. 
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�íî % �� − s�ì − �̅t  Eq. 37 

The first moment is now matched as highlighted in Eq. 38: 

�s�íî t % �s�� − s�ì − �̅t t % �̅ − �(��) + �̅ % �̅ Eq. 38 

In the context of this research, the moment matching technique is used differently 

in order to accommodate the specificity of the problem to be solved. First, it is applied to 

the underlying asset return instead of being applied to the underlying asset price: using 

the stationarity assumption, it is indeed easier to track a constant expected return than an 

ever-changing expected price. Second, the moment matching is not used during the initial 

Monte Carlo simulation but rather during the bootstrap resampling performed according 

to the sampling wheel algorithm. Indeed, the underlying business prospect is subject to 

many uncertainties, each following a specific and possibly correlated stochastic process. 

This means that the stochastic process driving the evolution of the business prospect 

value is unknown and the expected value of its return process is also unknown. Still, 

there is hope: when the bootstrap resampling is performed, the pooling of several samples 

of returns under the equivalent martingale measure (as described previously in section 

7.2.2) yields a very large sample of returns. Owing to the large size of the pooled sample, 

the estimation of the sample average return under the equivalent martingale measure is 

assumed to be accurate. This estimator is henceforth named the reference return. The 

stationarity assumption is then invoked to require that this reference return be matched at 

each time step of the resampling process. The match is achieved using the moment 

matching technique just described. 
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Control variates 

 Another technique to reduce the variance of estimates obtained with Monte Carlo 

simulations and therefore to reduce the computational effort is the use of control variates. 

Control variates exploit errors in the estimates of known quantities to reduce the error in 

estimates of an unknown quantity. For instance, it is customary to use the price of 

European options as control variate during the pricing of American options: in this case, 

the European option price is estimated using the same set of trajectories as those used for 

the pricing of the American option and the European option price estimate is compared to 

the corresponding closed-form solution to compute the estimation error. This error is 

used next to correct the American option price estimate.  

 Following Glasserman [131], if the objective is to estimate the average of n 

discounted payoffs denoted p�@Y..? using Monte Carlo simulations, then another output of 

the simulation with known expected value can be tracked. For instance, the discounted 

underlying asset price denoted ��@Y..? is a martingale under the equivalent martingale 

measure and therefore its expected value is its current value. Therefore, for any fixed 

value of b, the quantity in Eq. 39 can be estimated for the n trajectories in the simulation 

(i denotes the trajectory index). 

p�(M) % p� − Ms�� − �(�)t Eq. 39 

 Averaging over all trajectories, the sample average of the new random variable 

called the control variate estimator pï(M), is given in Eq. 40 as a function of the sample 

mean discounted payoff pï and the sample mean discounted underlying asset price �ì: 
pï(M) % pï − M ��ì − �(�)� % 1' ; �p� − Ms�� − �(�)t�?

�@Y  Eq. 40 
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The control variate estimator is unbiased as shown in Eq. 41: 

� �pï(M)� % � �pï − M ��ì − �(�)�� % �spït % �(p) Eq. 41 

And the variance of the control variate is given in Eq. 42: 

,)� �pï(M)� % 1' (,)�(p) − 2M ∙ 29,(p, �) + MR ∙ ,)�(�)) Eq. 42 

 The purpose of the control variate technique is to perform a reduction in variance 

of the estimator to be computed. Minimizing the variance of the estimator pï(M) consists 

in minimizing the above quadratic function in b. It is achieved for an optimal value of b, 

identified as b*, and leads to the variance reduction factor given in Eq. 43: 

M∗ % 29,(p, �),)�(�)    )'3   ,)�(p),)� �p − M∗s� − �(�)t� % 11 − ð�,}R  Eq. 43 

 The variance of X, the variance of S, and the covariance between X and S are 

usually unknown and only an estimate Mï∗ of M∗ can be used. The estimate Mï∗ is computed 

by replacing the variance and covariance with their sample estimates as shown in Eq. 44:  

Mï∗ % ∑ s�� − �ìtsp� − pït?�@Y∑ s�� − �ìtR?�@Y     Eq. 44 

 With the variance reduction ratio given in Eq. 43, there are several comments that 

can be made. First, the higher the correlation between the quantity to be estimated and the 

control variate, the higher the variance is reduced and therefore the more efficient the 

technique is. The high correlation between European option prices and American option 

prices explains why European options are often used as control variates for the pricing of 

American options. 
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Second, the variance reduction increases 

sharply with the correlation between the 

control variate and the quantity of interest 

as shown in Figure 41. Thus, for a control 

variate to be efficient, the correlation must 

be high. Otherwise, the extra complexity 

introduced by the tracking of control 

variates outweighs the benefits.   

 

Figure 41: Variance reduction factor versus of 

control variate correlation 

 

Let’s now try to understand the source of the variance of the control variate 

corrected estimator of an American option price. For this, let’s introduce the stopping 

time τ, the maturity of the option denoted by T, and let’s decompose the discounted 

option payoff as shown in Eq. 45. The variance of the first term on the right hand side is 

linked to the time interval between expiration and exercise (T-τ). The variance of the 

second term depends on how close the control variate is to the discounted payoff. The 

variance of the last term is null. All in all, this means that the variance of the control 

variate corrected estimator of the American option price increases when the time between 

expiration and exercise is long, i.e. for in-the-money and deep in-the-money options 

when exercise occurs early during the life of the option. 

pw − M∗s�r − �(�r)t % (pw − M∗ ∙ pr) + M∗ ∙ (pr − �r) + M∗�(�r) 
Eq. 45 

Control variate sampled at exercise 

 The previous observation highlights one lingering issue with the use of control 
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option do not always occur at expiration of the option while control variates are usually 

sampled at expiration. In fact, the timing discrepancy between the sampling of the 

discounted payoffs used for option pricing and the sampling of control variate reduces the 

correlation between these two quantities and thus the efficiency of the control variate 

technique. To improve this, Rasmussen [186] suggests a different sampling scheme for 

the control variates: instead of sampling the control variates at maturity, the control 

variates are sampled for each and every simulation trajectory individually at the time of 

exercise of the American option so as to maximize correlation with the American option 

discounted payoffs. The new sampling process for the control variate is highlighted in 

Figure 42.  

 

Figure 42: Sampling control variates at maturity (left graph) is less correlated with option payoffs 

than sampling control variates at exercise (right graph) 

 

 Under this new sampling scheme, the control variate corrected discounted option 

payoff can be decomposed as shown in Eq. 46. According to this equation, the variance 

of the control variate corrected estimator of the payoff no longer depends on the time 

interval between early-exercise of the option and expiration of the option, but only on the 

time to exerciseτ. 
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pw − M∗s�w − �(�w)t % (pw − M∗ ∙ pw) + M∗ ∙ (pw − �w) + M∗�(�w) Eq. 46 

Control variate improved regressions 

 To further reduce the variance of the American option price, Rasmussen [187] 

propose another improvement which consists in reducing the variance of the conditional 

expectation regressions of the continuation value. Similarly to why control variates 

reduce the variance of Monte Carlo estimations, the control variate improved regressions 

replace the regression of the discounted payoffs sampled at exercise by the regression of 

a random variable with same conditional expectation but smaller conditional variance. 

This helps produce a more efficient estimator of the conditional expectation of the 

continuation value and therefore a more accurate definition of the early-exercise policy. 

Indeed, Rasmussen [188] states that “if there is correlation in the discrepancies between 

the projection estimates and the true conditional values of [both] the continuation value 

and the control variate, […] the latter [can be used] to improve the former”. In other 

words, the error between the regression and the conditional expectation of a known 

quantity is used to improve the regression of the unknown continuation value. 

 As usual, Rasmussen selects European option prices as control variates for 

several reasons. First, there is a high correlation between European and American option 

payoffs. Then, the European option price process is a martingale under the equivalent 

martingale measure. Finally, a closed-form analytical formula is available to estimate 

European option price under certain assumptions. Unfortunately, the stochastic process 

governing the evolution of the underlying business prospect value is unknown in the 

current research and therefore European option prices cannot be used as control variate. 

Instead, the discounted business prospect value ��®Av�vr is suggested in this research as 
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control variate to improve the regressions. Indeed, it is strongly correlated with the 

American option payoffs for in-the-money options for which an optimal early-exercise 

policy is important. Therefore, the discounted business prospect value is a good 

approximation of the conditional expectation of the continuation value. Besides, it is a 

martingale under the equivalent martingale measure and its conditional expectation is 

known at each and every time step. Finally, its evolution over time is already simulated 

during the Monte Carlo simulations which alleviate some of the computational 

complexity of introducing control variates. The control variate improved regression 

technique is illustrated in Figure 43. 

 

 In mathematical terms, let’s now denote by τ the stopping time consistent with 

the early-exercise policy, by �w the control variate sampled at the stopping time τ (i.e. the 

discounted business prospect value sampled at the stopping time), by pw the discounted 

payoff sampled at the stopping time τ, by �w the control variate corrected discounted 

 

Figure 43: Illustration of the control variate improved regressions on two trajectories. The 

discounted underlying is used as control variate, sampled at exercise of the option, and projected 

onto the set of basis-functions. 
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payoff sampled at the stopping time τ, and by M� a time-indexed control variate correction 

factor. Similarly to what was expressed in Eq. 47, the control variate corrected discounted 

payoff is given in Eq. 47: 

 �w % pw − M�s�w − ��(�w)t Eq. 47 

 Let’s now introduce :� as the projection (or regression) of Eq. 47 onto a set of 

basis-functions. This is the same set of basis-functions as the one used in the regressions 

of the conditional expectation continuation value in the least-squares Monte Carlo 

algorithm. This leads to Eq. 48: 

:�( �w) % :�(pw) − M� �:�(�w) − :�s��(�w)t� Eq. 48 

 The discounted business prospect value is a martingale under the equivalent 

martingale measure. Invoking the optional stopping theorem [189] at the stopping time τ 

yields ��(�w) % �� which leads to Eq. 49. The first term on the right of Eq. 49 is the usual 

projection of the discounted payoffs onto the set of basis-functions, while the second term 

is a correction factor for the error between the projection of the discounted control variate 

sampled at exercise and the conditional expectation.  

:�( �w) % :�(pw) − M�(:�(�w) − ��) Eq. 49 

 The optimal factor M�∗ was previously introduced as the optimal ratio of 

covariance and variance that minimizes the variability of Monte Carlo estimators. In this 

improved setting, M�∗ is introduced as a function using the projections of the covariance 

and variance onto the set of basis-functions already used. This is highlighted in Eq. 50. 

M�∗ % 29,(pw, �w),)�(�w) ≈ :�s�(pw ∙ �w)t − :�s�(pw)t ∙ :�(��):� ��s�wRt� − :�(��)R  Eq. 50 
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Combined approach 

The variance reduction techniques presented hitherto enable the formulation of a 

new hypothesis stated below: 

Hypothesis 1.1.3.2 – Moment matching and control variates 

By using the moment matching technique during the generation of trajectories and by 

sampling control variates at exercise of the option, the variability of the option prices 

estimate is reduced. 

The variance reduction techniques discussed previously are implemented and a 

comparison between the original approach and the improved approach is made. For this, 

several test cases of call options on geometric Brownian motion are investigated and each 

test case is repeated fifteen times. The results are reported in Table 32 where the left 

column displays charts for the original approach while the right column displays charts 

for the improved approach using moment matching and control variates. For each 

approach, five test cases with different parameterizations of geometric Brownian motions 

are investigated and each test case is repeated fifteen times leading to an experiment 

featuring seventy five trials for the two approaches.   

Table 32: Comparison between original approach (left graphs) and control-variate improved 

approach (right graphs) 
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Table 32 Continued 

  

  

  

  
Call option price on an asset following a geometric Brownian motion. Simulation performed with 30,000 

original trajectories, and 30,000 resampled trajectories. 
S = asset price, µ = drift rate, σ = volatility, 

K = strike price = 1, q = dividend yield = 5%,  rf = riskless rate of interest = 2%, T = maturity = 1 year 
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The charts in Table 32 highlights many interesting aspects since each chart 

features the true American option price represented by the straight line, the true European 

option price represented by the dotted line, as well as the American option price 

computed by the proposed methodology (cross signs for baseline method results and 

rhombus signs for improved method results), and finally the 95% confidence interval 

around the American option price estimate represented by the vertical bars.  

One objective is to be as close as possible to the true American option price. In 

this regards, it seems that the variance-reduction improved technique yields better results 

as the black rhombuses (representing the new approach) are on average much closer to 

the straight line than the black crosses (representing the unmodified approach). Another 

objective is to reduce as much as possible the width of the 95% confidence interval. 

Indeed, one objective of the proposed method is to estimate the value of the timing 

flexibility offered to decision-makers. Mathematically speaking, this value is the early-

exercise premium of American options when compared to European options (i.e. the 

distance between the straight line and the dotted line). If the 95% confidence interval is 

so wide that it encompasses the price of the equivalent European option, then the early-

exercise premium is not statistically significant and the proposed method fails to establish 

the value of the timing flexibility. Ensuring there is as little overlap as possible between 

the confidence interval surrounding the American option price and the European option 

price is therefore of paramount importance. Here again, the improved method outshines 

the baseline method with a drastic reduction in the width of the 95% confidence interval: 

simple computations using the standard error of the option prices indicate that the widths 

of confidence intervals are reduced on average by 20%, reaching up to 70% for deep in-
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the-money options. Better results for in-the-money options are expected as the discounted 

underlying asset price, which serves as control variate, is more correlated with the option 

payoff when options are in-the-money. Owing to the better accuracy and the reduction in 

variance offered by the improved method, the hypothesis is successfully verified. 

7.2.4 Quasi-Monte Carlo simulations  

In the quest to lower the variability of the option prices obtained via Monte Carlo 

simulations, the pseudo-random number generator is also investigated. Indeed, repeated 

experiments yield slightly different option prices and slightly different trigger boundaries 

owing to the changing seeds used by the pseudo-random number generators. The change 

of seeds results in slight variations in the quality of the sequence of pseudo-random 

numbers used (non-uniformity, serial correlations) and may give rise to a bias in the 

simulation.  

Jackel [190] argues that low-discrepancy sequences provide superior performance 

when trying to generate uniformly distributed numbers for the purpose of inverse 

transform sampling1. The discrepancy of a sequence measures whether the amount of 

numbers in a sequence that is in an arbitrary set is proportional to the measure of this 

arbitrary set. Therefore, a low-discrepancy sequence of numbers on the unit interval 

ensures that numbers are uniformly distributed on the unit interval and that the amount of 

numbers in any segment contained within the unit interval is in proportion to the length 

of this segment. As a result, low-discrepancy sequences exhibit no gap or clustering and 

this is illustrated in Figure 44 which compares a two-dimensional set of uniformly 
                                                 

1 Inverse transform sampling is a method to generate pseudo-random number from any probability 
distribution by generating first uniformly distributed numbers on the unit segment and by using next the 
inverse of the cumulative distribution function. Also discussed in section 7.2.3.   
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Carlo simulations: to avoid the introduction of unwanted correlations when constructing 

trajectories, one properly initialized low-discrepancy sequence must be used for each 

dimension of the problem (i.e. for each time cross-sections in the simulation). 

 

Figure 45: Serial correlation at various lags for a sequence of 1,000 Sobol numbers 

Several low discrepancy sequences have been proposed for quasi-Monte Carlo 

simulations: Van-der-Corput sequence, Halton sequence [191], Niederreiter sequences 

[192], and the Sobol sequences [193]. However, these sequences are not all well suited 
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mentioned earlier, each time step represents one dimension and path-dependent options 
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American option with one year to maturity requires at least 250 dimensions if one 

number is required for each simulation time step and the discretization is done for each 

trading day of the year. Nevertheless, Sobol et al. [194] argue that properly initialized 

Sobol sequences may be used in high dimension applications. Jackel [190] indicates that 

the rate of convergence of quasi-Monte Carlo simulations is not one over the square root 
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the number of dimensions; this is however beyond the scope of this research and an 

interested reader is referred to Jackel [190] for more details. As a consequence of these 

favorable properties, Sobol low-discrepancy sequences are used for preliminary testing. 

However, several hurdles have been encountered and are discussed in the following 

paragraphs. 

Interactions have been observed between the Sobol’s low-discrepancy sequences 

and the linear congruential generator of pseudo-random numbers. These interactions are 

particularly obvious when the number of replications in the simulation is a power of two 

(i.e. 16384, 32768, 65536…). No definite answer to explain this observation has been 

found, if not for the fact that using non independent (i.e. correlated) low-discrepancy 

sequences to construct the empirical distribution from which the bootstrap resampling is 

performed may not be the wisest thing to do. Indeed, the significant serial correlation in 

Sobol’s sequences previously highlighted may collide with the supposedly random, yet 

non prefect, numbers generated by the linear congruential generator.  

This has motivated further research in the field of pseudo-random number 

generators. Indeed, it is widely believed [195] that the Microsoft VBA RND() function 

uses a method based on linear congruential generators at least in the older versions of 

Excel, while the newer versions of Excel may use a more reliable Mersenne Twister. This 

is however not officially documented. In this context, a local implementation of a good 

pseudo-random number generator is warranted to reduce the risk of using a potentially 

unreliable random number generator when the real options analysis implementation is 

ported from one computer machine to another. The Mersenne Twister is a popular 

pseudo-random number generator developed by Matsumoto and Nishimura [196] which 
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has several desirable properties: it has a very long period of 219937-1 which is so large that 

the likelihood of sampling the same sequence of numbers twice during a typical Monte 

Carlo simulation is null, and it passes the Diehard reference tests [197] for statistical 

randomness. For all these reasons, the Mersenne Twister has been implemented in the 

option analysis tool using the mt19937ar.dll 1 subroutines. This enables the user to 

benefit from the execution speed of subroutine coded in C from within the Excel VBA 

environment.  

Uniform numbers are required twice in the proposed methodology. The first time 

is when the uncertainties are simulated under the physical probability measure. The 

second time is during the bootstrap resampling when using the sampling wheel algorithm. 

Low-discrepancy sequences can therefore be used in the first step, in the second step, in 

both steps, or in none of these two steps. The quasi-Monte Carlo method is therefore 

tested for these different cases which are named as follows: PP MC for pseudo-random 

numbers used in both the simulation and resampling, QQ MC for Sobol low-discrepancy 

sequences employed in both simulation and resampling, PQ MC for pseudo-random 

numbers applied in the simulation and Sobol low-discrepancy sequence used in the 

resampling, QP MC for Sobol low-discrepancy sequences employed in the simulation 

and pseudo-random numbers applied in the resampling, MT MC for Mersenne Twister 

pseudo-random numbers used in both the simulation and resampling, and finally, MT 

RND for VBA generated pseudo-random numbers employed in both the simulation and 

resampling.  

                                                 

1 Retrieved August 2015: www.math.sci.hiroshima-u.ac.j/~m-mat/MT/VERSIONS/ASSEM-DLL/assem-
dll.html 
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Hypothesis 1.1.3.3 – Quasi-Monte Carlo simulations 

Using Sobol’s low discrepancy sequence in lieu of pseudo-random numbers increases the 

convergence of the least-squares Monte Carlo method 

Results of convergence tests are given in Figure 46 for the evolution of the 

relative error as a function of the number of simulations and resampled trajectories. There 

is no obvious pattern and no obvious better solution. This is somewhat surprising as the 

Sobol low-discrepancy sequences were expected to perform better. Results from another 

convergence test are given in Figure 47 where the evolution of the standard error as a 

function of the number of simulations and resampled trajectories is reported in a log-log 

graph. The slope of the curve in the log-log graph enables a quick estimation of the 

convergence rate and surprisingly, the low-discrepancy sequences do not outperform the 

pseudo-random numbers. In fact, the plots of Figure 47 are confounded and the rates of 

convergence are identical for all cases. The convergence rates, measured by the slope of 

the line in a log-log scale or by the exponent value in a power regression are close to -0.5. 

This means that the convergence rate is close to the inverse of the square root of the 

simulation number (1/√') which is, in fact, typical of regular Monte Carlo simulations. 

It is surprising that the use of low-discrepancy sequences does not improve the 

convergence rate. This is possibly due to the high dimensionality of the problem for 

which low-discrepancy sequences are known to be struggling. Another explanation may 

be unwanted interactions between the initial simulation of trajectories and the subsequent 

resampling of these trajectories which might introduce some side-effects owing to the 

autocorrelation structure of low-discrepancy sequences. In any case, the hypothesis is 
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proven wrong and the use of quasi-Monte Carlo simulation does not help in this 

application. 

 

 
Figure 46: Relative error 

as a function of the 

number of simulations for 

different pseudo-random 

and quasi-random number 

generators 
Call option price on an asset following a geometric Brownian motion 

S = 0.8, µ = 10%, σ = 20%, K = 1, q = 5%,  rf = 2%, T = 1 year 

 

 

Figure 47: Standard error 

as a function of the 

number of simulations for 

different pseudo-random 

and quasi-random number 

generators 
Call option price on an asset following a geometric Brownian motion 

S = 0.8, µ = 10%, σ = 20%, K = 1, q = 5%,  rf = 2%, T = 1 year 
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7.2.5 Scoping conditional expectation regressions 

For American options, the exercise policy defines the time and price of the 

underlying asset for which early-exercise maximizes the option value. Thus, the exercise 

policy yields an early-exercise boundary, which is a locus of time-indexed critical prices 

maximizing the value of the option. Critical prices lay at the edge between the immediate 

exercise region and the continuation region: they are the underlying asset prices for 

which the payoffs from immediate exercise exactly match the continuation values. In the 

least-squares Monte Carlo algorithm, the continuation value is computed at each time 

step using a conditional expectation regression. Improving the conditional expectation 

regressions should help refine the generation of the early-exercise boundary. In turn, this 

optimizes the exercise policy and maximizes of the option value.  

Hypothesis 1.1.3.4 – Scoping the regression domain 

Reducing the domain over which the continuation value conditional expectation is 

regressed facilitates the search for the critical price 

Natural boundary 

Longstaff and Schwartz [136] argue that the regression of the conditional 

expectation is improved by using only in-the-money paths “since it allows [...] to better 

estimate the conditional expectation function in the region where exercise is relevant and 

significantly improves the efficiency of the algorithm”. Restricting the regression domain 

even further may improve the quality of the continuation value regressions. To do this, 

the concept of natural boundary, introduced by Rasmussen [186] for other purposes, is 

used. Unlike the early-exercise boundary which is defined as the locus of points for 
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which the holding value exactly matches the immediate exercise value, the natural 

boundary is defined as the locus of points for which the value of holding the option until 

maturity exactly matches the immediate exercise value. The difference between the two 

boundaries is that the trigger boundary is constructed using the holding value with 

possibility of exercise at any time until maturity (an American real option), while the 

natural boundary is constructed using the holding value with no possibility of 

intermediate exercise before maturity (a European real option). Since European options 

have less value than American options, the natural boundary yields a locus of points less 

in-the-money than the early-exercise boundary. An improvement to the least-squares 

Monte Carlo method is therefore suggested and consists in restricting the regression 

domain of the continuation value by identifying the natural boundary and then regressing 

the continuation value using trajectories deeper in-the-money than the natural boundary. 

This reduction of the regression domain is illustrated in Figure 48. 

 

Figure 48: Removing points inside the natural boundary (right graph) scopes down the conditional 

expectation regression domain and improves the estimation of critical prices for American and 

Bermudan real options (call option depicted) 

 

0

1

2

3

0 12 24 36 48 60

U
n
d
e
rl
y
in

g
 V

a
lu

e

Time
0

1

2

3

0 12 24 36 48 60

U
n
d
e
rl
y
in

g
 V

a
lu

e

Time

Trigger
boundary

Trigger
boundary

Out-of -the-money 
points removed

Points inside natural 
boundary removed

Out-of -the-money 
points removed

Natural
boundary



www.manaraa.com

233 

The natural boundary is straightforward to define: at each time step �¸ starting 

from the next to last one, a bisection algorithm is used to search for the value of the 

business prospect ��� such that the European option price ����´òequals the option 

immediate payoff : as shown in Eq. 51.  ����´òs���t = :s���t Eq. 51 

 The bisection algorithm is iterative and therefore several identical European 

options with different spot prices must be priced at each time step. To speed-up the 

computations, the pricing is carried out with the same set of returns but with different 

simulation starting points: right before expiration, the European options have a one-step 

maturity and therefore only returns associated with the first time step of the trajectories 

are used; for the preceding step, the European options have a two-step maturity and 

therefore only returns associated with the first two time steps of the trajectories are used. 

The search for critical prices featuring the bisection algorithm with efficient use of 

simulated data is illustrated in Figure 49. In the depiction, the position of the natural 

boundary is estimated eighteen steps before expiration and to speed-up the computation, 

the returns associated with the first eighteen steps of one original trajectory are used to 

estimate the price of three different options with underlying spot prices at (1) S(42)=2.5, 

(2) S(42)=0.5, and (3) S(42)=1.5 
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Figure 49: Bisection algorithm is used to search for critical prices using a single set of returns 

Imposed boundary 

The natural boundary provides a lower bound for the critical prices of an 

American call option, while it provides an upper bound for the critical prices of an 

American put option. To better scope the regression domain, another boundary is 

required. For American put options, a lower boundary can be imposed with the null value 

of the underlying asset. For American call options, there is unfortunately no simple upper 

boundary and an ad-hoc boundary has to be found. It is customary in option pricing via 

finite-difference schemes to assume that the upper boundary of the grid mesh is at three 

times the strike price and that this upper boundary represents an infinite underlying asset 

price. The same assumption is proposed for the upper bound of the continuation value 

regression domain: only trajectories less in-the-money than a fixed upper boundary at 

three strike prices are used for the continuation value regression. The boundaries of the 

regression domain for a notional call option and a notional put option are depicted in 

Figure 50 where the left graph depicts the continuation value regression domain for a call 
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option, while the right graph depicts the continuation value regression domain for a put 

option. 

 

Figure 50: Scoping the regression domain for the conditional expectation continuation value 

Combined boundaries 

The natural boundary and the imposed boundary are combined together to reduce 

the size of the domain used for the regression of the continuation value. The results are 

given in Table 33 for three different types of geometric Brownian motions. Each test is 

repeated fifteen times and the red (+) indicate the early-exercise boundary position error 

using traditional continuation value regressions while the black (x) indicate position 

errors using the scoped continuation value regressions.  
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Table 33: Comparison between traditional continuation value regressions and scoped continuation 

value regressions 

In almost all cases, the position errors with the scoped regressions are better with 

error decreased by 50% on average. As a result the hypothesis stating that scoped 

regressions enable a better evaluation of critical prices is verified. 
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7.2.6 Projection basis selection

The generation of the trigger boundary using Monte Carlo simulations is a 

notoriously difficult task

price for which the continuation value equals the immediate exercise payoff. 

Consequently, an accurate trigger boundary requires an accurate way of finding the 

critical price and an accurate 

several issues hindering the ability to 

One issue is related to the 

to expiration increases, the effect of diffusi

relationship between the explanatory variable (

dependent variable (i.e. the continuation value) becomes

observed in Figure 51 where 
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from expiration, the diffusion effect is prevale

close to expiration, the diffusion effects are curbed and the continuation values are close 
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a dividend yield of 5%, a volatility of 

Figure 51: Continuation value
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Projection basis selection for continuation value regressions

The generation of the trigger boundary using Monte Carlo simulations is a 

notoriously difficult task. At each time step, it relies on searching for the critical price

he continuation value equals the immediate exercise payoff. 

Consequently, an accurate trigger boundary requires an accurate way of finding the 

an accurate regression of the continuation value. There are 

several issues hindering the ability to properly regress the continuation value.
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to expiration increases, the effect of diffusion becomes more and more prevalent
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This set of graphs also raises the question of the choice of a projection basis for 

regressions both close and far from expiration. The regressions are usually done with 

orthogonal polynomial families such as the simple monomials, the Laguerre polynomials, 

the Legendre polynomials, and the Chebyshev polynomials as reported by Stentoft [158] 

[198]. However, polynomial regressions often introduce artificial wiggles at the edge of 

the regression domain, known as Runge’s phenomenon. These wiggles can lead to 

multiple solutions to the critical price equation, a feature exacerbated by the proximity 

and collinearity between the continuation value and the immediate payoff as shown in 

Figure 52. In Figure 52, the objective function represents the difference between the 

continuation value and the immediate payoff: the regression looks fine unless zoomed-in 

where oscillatory behavior becomes more apparent and precludes the selection of a single 

critical price. Indeed, these oscillations are a significant problem because numerical 

solvers based on the Newton-Raphson method or on the bisection method are unable to 

discriminate the spurious solutions from the correct critical price solution. Black rhombus 

represents critical price solution obtained with Newton-Raphson while green square 

represents the reference critical price obtained with the finite-difference method. The 

simulation is done with 20,000 trajectories, with a drift of 10%, a dividend yield of 5%, a 

volatility of 20%, a risk free rate of 2%, and a time to expiration of 30 days.  
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Figure 52: Continuation value fitted with the first four Legendre polynomials for a call option on a 

geometric Brownian motion.  

 

A quick literature review indicates that pricing American options usually features 

regressions with up to five polynomials (Longstaff and Schwartz [136], Stentoft [198]), 

even though some analyses feature regressions with bases of up to twenty polynomials as 

described in Moreno and Navas [199]. Large projection bases usually include 

polynomials of higher degrees which produce more wiggles and more spurious solutions. 

Besides, large projection bases come at an increased computational complexity cost. 

In this context, a projection basis featuring fewer but adequately chosen terms is 

proposed as a way to curb the wiggles and mitigate the risk of spurious critical price 

selection. After investigation of the shape of the continuation value, a projection basis 

consisting of four elements is selected: a constant, the payoff itself, a decreasing 

exponential in the payoff, and another decreasing exponential in the square root of the 

payoff. This is motivated by several observations: the conditional expectation of the 

continuation value is very similar to the option payoff right before expiration which 

motivates the use of the payoff as a basis element; far from expiration, the conditional 

expectation of the continuation value retains some of the payoff appearance but is 

smoother and exhibit some convexity (at least for put and call options) therefore 
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motivating the two exponentials in the payoff; for very large values of the payoff, the 

continuation value is almost the payoff itself meaning that the convexity terms must 

vanish with very large payoffs. Besides these heuristic arguments, there is no theoretical 

reason for this particular choice of projection basis. The example in Figure 53 highlights 

the reduced oscillations of the objective function (regressed continuation value minus 

immediate exercise payoff) using this projection base. The experiment is performed with 

20,000 trajectories, a drift of 10%, a dividend yield of 5%, a volatility of 20%, a risk free 

rate of 2%, and a time to expiration of 30 days.  

#�®�@A..¨ ÀÁÂ
ÁÃ#A = 1                                 #Y = :)P9��                    #R = exp(−:)P9��)      

#¨ % exp Z−æ:)P9��2 [
¦ Eq. 52 

Figure 53: Critical price search with ad-hoc set 

of basis functions ��® exhibits fewer wiggles 
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critical price solutions are very noisy in the extrapolation region close to the beginning of 

the simulation. 

 

Figure 54: Solving for the critical price at each time step involves extrapolations close to the starting 

point of the simulation since none of the trajectories cross the trigger boundary (left graph). This 

results in noisy and approximate critical price solutions (right graph) close to the starting point. 

 

To address this problem, a significant improvement to the least-squares Monte 

Carlo methodology is proposed and consists in performing a simulation for which several 

adequately chosen starting points are retained to initialize the trajectories. This requires 

splitting the least-squares Monte Carlo method into two distinctive parts: the generation 

of the early-exercise boundary using the multi-start Monte Carlo simulations on the one 

hand, and the pricing of the option using a known early-exercise boundary on the other 

hand. The proposed multi-start Monte Carlo improvement stems from the observation 

that the quality of the least-squares regressions improves as more points and therefore 

more trajectories lie “in-the-money”. Indeed, with more trajectories “in-the-money”, the 

continuation value regressions as well as the critical price estimations become more 

accurate since more trajectories are likely to be in the neighborhood of the trigger 

boundary.  
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In fact, even when the trigger boundary is reasonably well approximated as a 

whole, the approximation deteriorates close to the initial starting time in a traditional 

Monte Carlo simulation. This is mostly an extrapolation problem when using numerical 

solvers to search for the critical price with continuation value regressions. At the initial 

steps of the simulation, the effects of diffusion are limited and the simulated business 

prospect values used for the continuation value regressions are not dispersed enough to 

encompass the neighborhood of the critical price. Rasmussen [30] suggests starting the 

simulation prior to the current time (i.e. back in time) in order to let the diffusion 

artificially disperse the trajectories and “to provide sufficient in-the-money observations 

to estimate the exercise boundary”. Even though this is a step in the right direction, this 

solution does not go far enough and several improvements are suggested. First, the 

objective should not be to provide a sufficient number of in-the-money observations but 

rather to provide a sufficient number of observations close to the unknown early-exercise 

boundary so as to avoid extrapolations during the critical price estimation. Next, the 

Rasmussen technique would not be efficient in the proposed real options methodology 

from a computational point of view as a longer clock-time must be simulated to 

accommodate the back-in-time starting point. Finally, the Rasmussen technique does not 

guarantee that the dispersion is sufficient to provide observations close to the critical 

price. In fact, for at-the-money call options with low risk-free rates and large volatilities, 

the drift of a geometric Brownian motion under the equivalent martingale measure is 

likely to be negative and the proposed approach tends to drive trajectories away from the 

initial critical prices of the trigger boundary. These observations lead to the following 

hypothesis. 
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Hypothesis 1.1.3.5 – Multi-start Monte Carlo simulations 

Using several starting points for the generation of trajectories facilitates the construction 

of the early-exercise boundary by improving the quality of the least-squares regression in 

the neighborhood of the critical price. 

Instead, the suggested multi-start Monte Carlo simulation is based on the fact that 

the position of the trigger boundary is not affected by the initial business prospect value. 

Therefore, using different starting points for the simulations will yield the same 

boundary. From a computational point of view, no extra complexity is introduced: instead 

of generating ' ∙ / replicating trajectories in a traditional setting, a multi-start Monte 

Carlo featuring m starting points will have n replicating trajectories attached to each 

starting point. As such, the technique illustrated in Figure 55 does not increase the 

computational burden. 

 

Figure 55: Simulation with multiple starting points leads to fewer extrapolations and less noisy 

critical price estimates, even far from expiration 
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The remaining question concerns the choice of the starting points. These are 

chosen so as to maximize the likelihood that trajectories “encompass” the early-exercise 

boundary while minimizing the likelihood of sampling the domain where early-exercise 

is not optimal. The strike price and a multiple of the strike price can almost always be 

used to select two extreme starting points. For instance, in a preceding section dealing 

with regressions, the upper bound is set as three times the strike price for call options, 

while the lower bound is set with a price close to zero for put options. The initial point of 

the natural boundary derived previously provides another excellent lowest starting point 

for call options or another highest starting point for put options. Finally, the domain in 

between these extreme starting points can be evenly discretized to get evenly-spaced 

simulation starting points. One range of starting points found by considerable trial and 

errors and used in the remaining of this research is illustrated in Figure 56: the range 

starts at 85% of the terminal value of the natural boundary and ends at the strike price 

plus 300% of the difference between the initial value of the natural boundary and the 

strike price. 
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Table 34 describes the position error of the early-exercise boundary for five 

American call options on a geometric Brownian motion when varying the number of 

starting points. The red line corresponds to a traditional least-squares Monte Carlo 

algorithm (with a single starting point at the current spot price), while the black crosses 

correspond to the proposed multi-start Monte Carlo algorithm with five to eighty starting 

points. To account for the variability of results when performing Monte Carlo 

simulations, each test case is repeated fifteen times. Two metrics are used for these 

comparisons: the initial relative error and the Hausdorff distance. The initial relative error 

is of interest because it indicates how the experimental trigger boundary differs from the 

reference boundary at the very time when investment decisions must be made. The 

Hausdorff distance indicates how close the shapes of the experimental and reference 

boundaries are. Averages of absolute initial relative errors for these fifteen trials are 

plotted in the charts of the left column, while averages Hausdorff distances for the fifteen 

trials are reported in the charts of the right column.  

Table 34: Comparison of the average error of early-exercise boundaries using traditional Monte 

Carlo simulations (red line) and using multi-start simulations (x) for five different call options 
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American call option price on an asset following a geometric Brownian motion. Simulation performed with 

a total of 30,000 original trajectories, and a total of 30,000 resampled trajectories. 

Each test case is repeated 15 times and the average absolute relative errors and the average Hausdorff 

distances of the 15 trials are plotted. 

S = asset price, µ = drift rate, σ = volatility, 

K = strike price = 1, q = dividend yield = 5%,  rf = riskless rate of interest = 2%, T = maturity = 1 year 

Results in Table 34 indicate a significant reduction in the early-exercise boundary 

position error when using Multi-start Monte Carlo simulations. On average, the absolute 

values of the initial relative errors are reduced by 50% while the Hausdorff distances are 

reduced by about 45%. It is worth mentioning that this is achieved without additional 

computation cost, and execution times are comparable to a typical two-stage least-squares 

Monte Carlo simulation (one stage for early-exercise boundary generation and one stage 

for option pricing). Out of interest, the improvements are not monotonous: when going 

from one starting point to two starting points, results degrade because the two starting 

points are encompassing, yet very far, from the early-exercise boundary. Improvements 

only appear after five starting points are selected, become very noticeable when going 

from ten to twenty starting points, slow down when going to forty, and after fifty starting 

points no extra benefits are observed. Therefore, fifty starting points are selected in the 

remaining of this research. The hypothesis that using Multi-start Monte Carlo simulations 

improves the generation of the early-exercise boundary is thus verified. 
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7.2.8 Regression and filtering of critical prices to form trigger boundary 

The refinements of the least-squares Monte Carlo algorithm described up to this 

point aim at improving the estimation of the critical price at each and every time step in 

the simulation. The next step is to actually construct the trigger boundary from these 

improved critical price estimates. The straightforward approach of Longstaff and 

Schwartz [136] consists in using this locus of critical prices as the early-exercise 

boundary. Yet, the construction of the trigger boundary may benefit from additional 

theoretical results available in the literature. First, the trigger boundary is a monotonous 

function of time for usual put and call options with continuous dividend yields as proved 

by Jacka [200] and Pham [201]. Second, Kim [178] and Pham [201] show that the trigger 

boundary is smooth and continuous except at maturity. At maturity, a discontinuity may 

occur depending on the relative values of the continuous dividend yield and the risk-free 

rate of return (Kwok [202]). One may then formulate the following hypothesis. 

Hypothesis 1.1.3.6 – Regression and filtering of the set of critical prices 

Regressing the set of critical prices and removing critical price outliers improves the 

construction of the early-exercise boundary. 

Regression of critical prices to generate trigger boundary 

Based on the previous observations, it may be stated that the critical prices 

obtained with the least-squares Monte Carlo simulations can be regressed to yield a 

continuous and monotonous function and therefore remove the jaggies present in the 

locus of critical prices. Indeed, the proposed continuation value regressions yield critical 

price predictions that are noisy and that induce a non-monotonous early-exercise 
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boundary. A specific treatment is however required at expiration of the option to handle 

the possibility of discontinuity. This is done by simply removing the expiration point 

from the regression: in fact, at expiration, the trigger boundary is exactly at the strike 

price and therefore the true position of the boundary is known with certainty and does not 

need to be regressed. Similarly, at the time step immediately preceding expiration, the 

American option is a European option with no possibility of intermediate exercise. 

Consequently, the early-exercise boundary and the natural boundary are confounded at 

this time step. Because the natural boundary has already been constructed with good 

accuracy, this point does not need to be regressed and may serve as an anchor for the 

trigger boundary. 

Selection of a regression basis for the trigger boundary 

Once a decision to regress the critical price is made, the question of the selection 

of the projection basis arises. Any type of orthogonal projection basis should work but 

knowledge of the general shape of the trigger boundary can help select an adequate basis 

which in turn can improve the regression. For instance, Carr et al. [203] indicate that put 

and call options exhibit an infinite slope at expiration which means that a projection basis 

made of a finite number of polynomials is probably not adequate. Instead, a set of ad-hoc 

functions is suggested: a constant to account for the possible jump of the trigger boundary 

at expiration, a square-root function in the time to expiration to approximate the boundary 

behavior close to maturity, and finally an exponential in the time to expiration to model a 

vanishing contribution far from maturity. Besides these heuristic arguments, there is no 

theoretical reason for this particular choice. A notional example of critical price estimates 
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regression is depicted in Figure 57 and the basis-functions used in this regression are 

mentioned in Eq. 53. 

 

Ù�®�@A..¨ ÅÙA % 1                ÙY % -=|r=�|ô.õõ
ÙR % æ|� − �|  ¦ 

 
Eq. 53 

 

Figure 57: Regression of critical price estimates (red) 

and true boundary (black) 

   

Filtering and removal of outliers 

Because the trigger boundary is “well behaved”, it becomes possible to perform 

much more than simply regressing the critical prices. For instance, it was previously 

mentioned that the locus of critical prices is extremely noisy and therefore some form of 

filtering might improve drastically the regression of the trigger boundary, provided it 

does not slow down the execution time. A two-step regression is suggested to perform 

this filtering: a multiple linear regression is first done on the crude set of critical prices to 

generate a crude trigger boundary reference which enables the estimation of residuals 

which helps filter out outliers; another multiple linear regression is performed next on the 

reduced set of critical prices to generate an improved trigger boundary.  

According to Pope [204], the detection of outliers is typically done by estimating 

the Studentized residuals of a regression. The Studentized residuals recognize that the 

standard deviation of residuals changes from data point to data point in a regression. 

Although this is the correct way to detect outliers, this is cumbersome as the Studentized 
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residuals require the computation of the influence matrix (hat matrix denoted ö which 

maps the vector of dependent variables denoted y, to the vector of fitted values denoted P÷, 

with terms ℎ�,¿ = 29,BP÷�, P¿E ,)�BP¿E⁄ ). This considerably slows down the procedure, 

and absent the influence matrix, the semi-Studentized residuals are used for filtering 

purposes. Semi-Studentized residuals do not account for the variability of the standard 

deviation of residuals from one data point to another which makes the computation faster 

as residuals are simply normalized by the sample average standard deviation of residuals. 

If the regression model has m+1 parameters to be estimated from n data points, then the 

semi-Studentized residuals are given by Eq. 54.  

ø�∗ = P� − P÷�Ï 1' − / − 1 ∑ BP� − P÷�ER?�@Y  
Eq. 54 

The normalization of the residuals creates a scale-free t-like statistic following a t-

distribution which provides information regarding the size of the residual [171]. If the 

Studentized residual is large, then the error is larger than what is expected by chance and 

some further checking is warranted. In the simplified approach proposed, the use of semi-

Studentized residuals somewhat complicates the conclusion as the t-like statistic does not 

follow exactly a t-distribution. Furthermore, a large semi-Studentized residual is assumed 

to suggest that the corresponding data point is an outlier. Given that the number of critical 

price data points is much larger than the number of parameters to be estimated during the 

regression, the approximate t-distribution is replaced with the standard normal and the 

threshold for outlier identification is set at ±1.96 corresponding to the 2.5 and 97.5 

percentile of the standard normal distribution. An example of filtering critical prices is 

given in Figure 58 where the outliers represented in red are filtered out. 



www.manaraa.com

252 

 

Figure 58: Removing outliers using semi-Studentized residuals 

 

With the outliers filtered out, a new regression of the critical prices is performed 

and it yields an improved trigger boundary. Comparisons between the crude boundaries 

and the improved boundaries are provided in Table 35. The same two metrics are retained 

for these comparisons: the initial relative error and the Hausdorff distance.  

Table 35: Comparison of boundary position errors for a crude locus of critical prices (+) and for the 

filtered and regressed trigger boundary (x) using five call options with each test case repeated fifteen 

times. 
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American call option price on an asset following a geometric Brownian motion. Simulation performed with 

30,000 original trajectories, and 30,000 resampled trajectories. 

S = asset price, µ = drift rate, σ = volatility, 

K = strike price = 1, q = dividend yield = 5%,  rf = riskless rate of interest = 2%, T = maturity = 1 year 

Improvements can be seen in each of the five cases but are particularly obvious 

when volatility is high. This is not surprising as this corresponds to cases where the 

experimental critical points are most noisy and therefore to cases where filtering out 

outliers and where regressing critical prices bring most benefits. Out of interest, the 

Hausdorff distances for the crude boundaries are all between 0.00 and 0.25 while they are 

between 0.00 and 0.03 for the filtered boundaries. This highlights the drastic 

improvements produced by this heuristic approach and this verifies the hypothesis stating 

that filtering outliers and regressing the locus of filtered critical points yield a better 

early-exercise boundary.  

7.2.9 Matching new research questions and hypotheses 

Preliminary testing was useful as it indicated that the methodology, as initially 

proposed, was not sufficient to achieve the required level of accuracy for the computation 

of option prices and the generation of early-exercise boundaries. As a result a new 

research question is formulated as follows: 
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Research Question 1.2.2 – Reducing variability of results 

How can the variance of results obtained from the least-squares Monte Carlo simulation 

be reduced to yield consistent real options price estimations and consistent early-exercise 

boundary shapes? 

To try to answer this research question, several hypotheses were formulated. The 

first one deals with the generation of trajectories and propose an improved bootstrap 

technique to ensure that the distributional properties of returns are preserved and that no 

artifacts are introduced when using the sampling wheel algorithm. 

Hypothesis 1.1.3.1 – Pooling returns to increase size of sample to bootstrap 

Pooling samples of returns from different time cross-sections or increasing the relative 

size from the original sample with respect to the bootstrap sample limits the repetitive 

sampling of the same highly-weighted return values. 

The second hypothesis also deals with the generation of trajectories but takes a 

different approach: instead of trying to generate perfectly distributed returns, the 

technique recognizes that sampling errors are unavoidable but that they can be corrected 

“on the go” by using the same set of sampled returns to compute known quantities and 

estimate sampling errors.   

Hypothesis 1.1.3.2 – Moment matching and control variates 

By using the moment matching technique during the generation of trajectories and by 

sampling control variates at exercise of the option, the variability of the option prices 

estimate is reduced. 
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The third hypothesis also deals with the generation of trajectories but takes a new 

approach: instead of generating pseudo-random and “independent” numbers on the unit 

segment for the purpose of the inverse transform sampling, it proposes to use sequences 

of numbers, known as Sobol’s low-discrepancy sequences, which are known to be well 

(uniformly) distributed on the unit segment. 

Hypothesis 1.1.3.3 – Quasi-Monte Carlo simulations 

Using Sobol’s low discrepancy sequences in lieu of pseudo-random numbers increases 

the convergence of the least-squares Monte Carlo method. 

The fourth hypothesis aims at improving the generation of the early-exercise 

boundary by limiting the scope of the conditional expectation of the continuation value 

regressions. By doing so, it is hypothesized that regression will be improved and that the 

estimation of critical prices will be more accurate.  

Hypothesis 1.1.3.4 – Scoping the regression domain 

Reducing the domain over which the continuation value conditional expectation is 

regressed facilitates the search for the critical price. 

The fifth hypothesis aims also at improving the generation of the early-exercise 

boundary by ensuring that there are enough trajectories and therefore enough data points 

in the neighborhood of the (still unknown) critical price. It is hypothesized that having 

many points in the neighborhood of the critical price will improve the quality of the 

regression on the one hand and prevent the use of extrapolations during the critical price 

search on the other hand. 
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Hypothesis 1.1.3.5 – Multi-start Monte Carlo simulations 

Using several starting points for the generation of trajectories facilitates the construction 

of the early-exercise boundary by improving the quality of the least square regression in 

the neighborhood of the critical price. 

Finally, the last hypothesis aims at improving the generation of the early-exercise 

boundary by first removing critical price outliers and then by smoothing it out using 

regression. Indeed, once the outliers are removed, it is hypothesized that the filtered set of 

critical prices lends itself well for regression and that the regressed boundary is a better 

approximation of the true boundary than the set of raw critical prices.  

Hypothesis 1.1.3.6 – Regression and filtering of the set of critical prices 

Regressing the set of critical prices and removing critical price outliers improves the 

construction of the early-exercise boundary. 

This leads to a new and more extensive mapping between research questions and 

hypotheses. This updated mapping is described in Figure 59. 
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Figure 59: Updated set of research questions and hypotheses 
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7.3 Verification of technical hypotheses 

According to the Project Management Institute [205], the purpose of the 

verification process is to evaluate “whether or not a product, service, or system complies 

with a regulation, requirement, specification, or imposed condition.” This is achieved by 

following the bottom-up approach of the definition-decomposition and verification-

validation “V-model” previously described. The verification is performed on each 

technical and modeling hypothesis by studying them independently and testing them on 

canonical tests. These hypotheses are the foundation of the proposed methodology. 

Consequently, demonstrating in a crystal-clear manner that these individual pieces work 

as intended is critical to get the buy-in from practitioners. First, the non-parametric 

Esscher transformation implementation is checked to verify that the risk-neutralization 

process is working correctly for commonly used stochastic processes in real options 

analyses. Next, the implementation of the bootstrap technique is checked to ensure that it 

can be used for resampling purposes. The implementation of the least-squares Monte 

Carlo options pricing technique is subsequently checked to verify that real options 

featuring early-exercise opportunities can be properly evaluated. Finally, once the 

individual verification of these three implementations is achieved, the verification of the 

ensemble is performed to ensure that the proposed Monte Carlo based method for the 

evaluation of real options works properly. 

7.3.1 Non-parametric Esscher transform technique 

The Esscher transform and its non-parametric empirical approximation have been 

presented as a means to perform the risk-neutralization step required to evaluate real 
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options. In a real options framework, the practitioner typically starts by calibrating a 

stochastic process under the historical probability measure and then generates trajectories 

representing the possible evolutions over time. To price options, practitioners must 

nevertheless use trajectories under an equivalent risk-neutral measure to estimate the 

expected option payoff which is then discounted back to the present time at the risk-free 

rate of return. The Esscher transformation and its non-parametric approximation were 

introduced as a technical solution to perform this change of probability measure. 

Research Question 1.1.2 – Improving Monte Carlo methods for real options 

With usability by practitioners in mind, how can Monte Carlo methods be modified to 

alleviate the complexity of finding the proper equivalent probability measure? 

Research Question 1.1.3 – Adaptation of Esscher transform for real options 

How can option pricing by means of Esscher transform be adapted to a corporate 

investment analysis within the context of a real options methodology? 

Hypothesis 1.1.2 – Non-parametric Esscher transform for pricing real options 

Real options valuation via non-parametric Esscher transforms is a promising framework 

for staggered investment analyses. It is based on rigorous foundations, offers a clear and 

transparent methodology for practitioners and uses probabilistic techniques widely 

accepted within companies. 

The purpose of the non-parametric Esscher transformation is to transform an 

arbitrary distribution such that it exhibits risk-neutral properties. In doing so, the Esscher 

transform preserves the nature of some classes of stochastic processes which means for 

instance that a lognormal distribution remains a lognormal distribution. These induced 
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distributions are therefore investigated to check whether they satisfy the risk-neutrality 

and the type-preservation properties. The verification starts with a Monte Carlo 

simulation of the evolutions of primary uncertainties affecting the value of the underlying 

asset which is then simulated under the equivalent martingale measure using the non-

parametric Esscher transform. This yields, at each time step of the simulation, 

distributions of both underlying asset values and underlying asset returns. The 

distribution of returns is compared to the known theoretical counterpart. Since one 

requirement for the proposed real options methodology is the ability to capture a complex 

reality featuring uncertainties following non-standard stochastic processes, the 

verification is performed for two completely different processes: a classic geometric 

Brownian motion (GBM) for which a single equivalent martingale measure exists and the 

Merton jump-diffusion process (JD) for which the equivalent martingale measure is not 

unique since the market is incomplete. However, the measure induced by the Esscher 

transformation leads to one specific combination of jump-diffusion parameters (i.e. new 

drift, jump arrival rates, and jump amplitudes) which are discussed in Schoutens [206]. 

Verification process and criteria for success 

Several tests are performed to verify the implementation of the change of 

probability measure using non-parametric Esscher transformations. The first is a 

qualitative test that visually compares the empirical probability distribution induced by 

the non-parametric Esscher transformation to the known risk-neutral probability 

distribution. This test is considered successful if there is no apparent departure from the 

bisecting line in the Q-Q plot. The second test is quantitative and uses the one-sample 

Kolmogorov-Smirnov statistical test to confirm whether the empirical probability 
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distribution and the known risk-neutral probability distribution differ in any way. This 

test is considered successful if the equality of distributions cannot be rejected at a five 

percent level of significance. The third test is also quantitative and uses the z-test and the 

Student’s t-test to confirm whether the means of these two distributions differ in any way. 

This test is considered successful if the equality of means cannot be rejected at a five 

percent level of significance. All these tests are performed for two popular stochastic 

processes: the geometric Brownian motion and the Merton jump-diffusion process. 

Graphical tests 

The first batch of tests deals with the geometric Brownian motion. The stochastic 

process is sampled to generate 80,000 trajectories representing 80,000 possible evolutions 

of an underlying asset value over time. At each time step, these values induce a sample of 

80,000 returns. One sample is subsequently transformed (weighted) using the non-

parametric Esscher transform to yield a new risk-neutral sample which is compared to the 

known theoretical equivalent risk-neutral distribution using a Q-Q plot. This exercise is 

repeated for different cases of geometric Brownian motions for which the risk-free rate of 

return is varied between 2% and 8%, the drift rate is varied between 5% and 20%, the 

dividend yield is varied between 0% and 15%, the volatility is varied between 20% and 

40%, and finally, the time step is varied between four and eight days (90 time steps with 

a maturity varied between one and two years). The Q-Q plots corresponding to 20 

different test cases are presented in Table 37 on pages 264 and 265. 

A summary of the results is provided in Table 36. All Q-Q plots exhibit loci of 

quantiles aligned almost perfectly on the bisecting lines. Minor deviations appear on 

some Q-Q plots for extreme quantiles (usually the first five and last five quantiles in 
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several thousand quantiles) but these do not exhibit any specific pattern. Furthermore, 

upon repetition of the questionable test cases, the minor deviations do not re-appear 

leading to the conclusion that these are artifacts of simulations using imperfect random 

number generators. 

Table 36: Summary of Q-Q plot tests with GBM 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1 

Minor negative kurtosis 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1 

Minor positive kurtosis 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2 

Two minor bumps 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2 

Minor positive kurtosis 

GBM 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1 

Minor positive kurtosis 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1 

Minor positive kurtosis 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1 

Minor positive kurtosis 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2 

On bisecting line 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=2 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.05, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.15, 

264 

 
=0.05, q=0.00, σσσσ=0.40, T=1 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=1 rf =0.02, 

 
05, q=0.00, σσσσ=0.40, T=2 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=2 rf =0.02, 

 
=0.05, q=0.15, σσσσ=0.20, T=1 

 
rf =0.02, µµµµ=0.20, q=0.05, σσσσ=0.20, T=1 rf =0.02, 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=1 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=2 

 
=0.02, µµµµ=0.20, q=0.15, σσσσ=0.20, T=1 
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rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, µµµµ=0.05, q=0.00, 

 
rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, µµµµ=0.05, q=0.00, 

rf = riskless rate of interest; µ = diffusion statistical drift; 

Experiment parameters: time step n

Table 37: Q-Q Plots for verification of the non-parametric Esscher transformation applied to geometric Brownian motion
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=0.05, q=0.00, σσσσ=0.40, 

T=1 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, 

 
=0.05, q=0.00, σσσσ=0.40, 

T=2 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, 

= diffusion statistical drift; σ = diffusion volatility; q = dividend yield; and T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 80,000; return sample pooling = 1

parametric Esscher transformation applied to geometric Brownian motions

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=1 

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=2 

simulation horizon (years) 

pooling = 1 

s 
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The second batch of tests deals with the Merton jump-diffusion process. The 

stochastic process is sampled to generate 50,000 possible trajectories which are used to 

construct samples of 50,000 returns at each time step. Ten return samples are pooled 

together to yield a sample of 500,000 returns which are transformed using the non-

parametric Esscher procedure. The resulting sample is then compared to the theoretical 

equivalent risk-neutral distribution.  

In these tests, the Q-Q plots are graphed with fewer points than were obtained 

from the simulations in order to speed-up the verification process. A down-sampling of 

50 which consists in ordering returns and then selecting only 10,000 returns (one every 

fifty returns) is first performed to graph the Q-Q plots. Indeed, the estimation of 

theoretical quantiles is a time consuming endeavor as the cumulative probability 

distribution of returns induced by a Merton jump-diffusion process is expressed as an 

infinite series and it must be inverted to find quantiles.  

This exercise is repeated for different parameters with emphasis on varying 

parameters governing jumps: the jump arrival rate is varied between 200% and 800% 

while jump size volatility is varied between 20% and 40%. The risk-free rate of return is 

varied between 2% and 8%, the drift rate is varied between 5% and 20%, the dividend 

yield is varied between 0% and 5%, and the time step is varied between four and eight 

days (90 time steps with a maturity between one and two years). The resulting Q-Q plots 

are presented in Table 39 on pages 268 and 269 with a summary of findings highlighted 

in Table 38. 

Q-Q plots are almost as good as in the previous case and small deviations are still 

observed. These deviations are mostly restricted to the extreme end of the tails and are 
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certainly due to the difficulty in capturing rare events (jumps) in simulations. Most of the 

Q-Q plots exhibit loci of quantiles well aligned on the bisecting lines and the minor 

deviations appearing in some plots do not exhibit specific patterns and are not repeatable. 

 Table 38: Summary of Q-Q plot tests with Merton jump diffusion model 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
Minor negative kurtosis 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2, 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2, 

λ=4.0, γ=-0.02, δ=0.20 
Two minor bumps 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2, 

λ=6.0, γ=-0.08, δ=0.40 
Minor positive kurtosis 

Merton JD 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
Minor positive kurtosis 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
Minor positive kurtosis 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2, 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2, 

λ=8.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2, 

λ=8.0, γ=-0.08, δ=0.40 
On bisecting line 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20,  

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 
rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=
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=0.05, q=0.00, σσσσ=0.20, 
=-0.08, δδδδ=0.40, T=1 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.02, 

λλλλ=6.00, 

 
=0.05, q=0.00, σσσσ=0.20, 
=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 
rf =0.02, 

λλλλ=6.00, 

 
=0.15, q=0.00, σσσσ=0.20, 
=-0.08, δδδδ=0.40, T=1 

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.02, 

λλλλ=6.00, 

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 

 
=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 
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rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 
rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.08, µµµµ=0.20, q=0.05, 

λλλλ=4.00, γγγγ=
rf = riskless rate of interest; µ = diffusion statistical drift; 

γ = mean amplitude of jumps; 
Experiment parameters: time step number = 90; simulation number = 50,000; 

Table 39: Q-Q Plots for verification of the non-parametric Esscher transformation applied to Merton jump diffusion pr
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=0.15, q=0.00, σσσσ=0.20, 
=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 
rf =0.02, 

λλλλ=6.00, 

 
=0.20, q=0.05, σσσσ=0.40, 
=-0.08, δδδδ=0.40, T=1 

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=8.00, γγγγ=-0.02, δδδδ=0.20, T=1 
rf =0.08, 

λλλλ=8.00, 
statistical drift; σ = diffusion volatility; q = dividend yield; λ = arrival rate of jumps (per year); 

= mean amplitude of jumps; δ= volatility of jump amplitude; and T = simulation horizon (years)
ameters: time step number = 90; simulation number = 50,000; return sample pooling = 10; down-sampling factor = 50

parametric Esscher transformation applied to Merton jump diffusion process

 
=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 

 
=0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

=8.00, γγγγ=-0.08, δδδδ=0.40, T=1 
= arrival rate of jumps (per year);  

 
sampling factor = 50 

ocesses 
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Statistical tests – Kolmogorov-Smirnov test 

If Q-Q plots are helpful to qualitatively compare experimental samples and 

reference distributions, they do not quantify whether the observed deviations are 

statistically significant. Thus, more testing is warranted to quantify the observed 

departures from the bisecting lines and to perform statistical testing. For each test case, 

the observed samples are compared to the corresponding theoretical risk-neutral 

distribution using the Kolmogorov-Smirnov test. The null hypothesis for the 

Kolmogorov-Smirnov test is that the observed samples induced by simulations and non-

parametric Esscher transformations are drawn from the known theoretical distributions. 

The Kolmogorov-Smirnov test yields test statistics (and p-values) that can be compared 

to critical values in order to assess the likelihood of observing such difference between 

the sample and the reference distribution. 

The first batch of tests deals with geometric Brownian motions using different 

combinations of parameters (risk free rate, drift, volatility, dividend yield and maturities) 

representative of what would be used for the pricing of real options. The risk-free rate of 

return is varied between 2% and 8%, the drift rate is varied between 5% and 20%, the 

dividend yield is varied between 0% and 15%, the volatility is varied between 20% and 

40%, and finally, the time step is varied between four and eight days (90 time steps with 

a maturity varied between one and two years). The simulations are run for 80,000 

different paths leading to a sample of 80,000 returns at each time step. For twenty 

different test cases reported in Table 40, the one-sample Kolmogorov-Smirnov test 

statistic is computed as well as the corresponding p-value under the null hypothesis (p-

value represents the likelihood of having a result equal or more extreme than what is 



www.manaraa.com

271 

currently observed given that the null hypothesis is correct). The p-values for the test 

cases are very large and all of them are much greater than the 5% level of significance 

chosen for this test. As a result, it is not possible to reject the null hypothesis at the 5% 

level of significance.  

Table 40: Kolmogorov-Smirnov test for twenty combinations of parameters 

rf µ q σ T 

Kolmogorov-

Smirnov test 

statistic 

Kolmogorov-

Smirnov test 

critical value 

Kolmogorov

-Smirnov test 

p-value 

2.0% 5.0% 0.0% 20.0% 1.00 0.532 1.358 94.0% 

2.0% 20.0% 0.0% 20.0% 1.00 0.498 1.358 96.5% 

2.0% 5.0% 0.0% 40.0% 1.00 0.469 1.358 98.0% 

2.0% 20.0% 0.0% 40.0% 1.00 0.662 1.358 77.4% 

8.0% 5.0% 0.0% 20.0% 1.00 0.494 1.358 96.8% 

8.0% 20.0% 0.0% 20.0% 1.00 0.749 1.358 62.9% 

8.0% 5.0% 0.0% 40.0% 1.00 0.759 1.358 61.3% 

8.0% 20.0% 0.0% 40.0% 1.00 0.438 1.358 99.1% 

2.0% 5.0% 0.0% 20.0% 2.00 0.586 1.358 88.2% 

2.0% 20.0% 0.0% 20.0% 2.00 0.616 1.358 84.3% 

2.0% 5.0% 0.0% 40.0% 2.00 0.499 1.358 96.4% 

2.0% 20.0% 0.0% 40.0% 2.00 0.465 1.358 98.2% 

8.0% 5.0% 0.0% 20.0% 2.00 0.588 1.358 88.0% 

8.0% 20.0% 0.0% 20.0% 2.00 0.560 1.358 91.3% 

8.0% 5.0% 0.0% 40.0% 2.00 0.419 1.358 99.5% 

8.0% 20.0% 0.0% 40.0% 2.00 0.597 1.358 86.8% 

2.0% 5.0% 5.0% 20.0% 1.00 0.567 1.358 90.5% 

2.0% 20.0% 5.0% 20.0% 1.00 0.597 1.358 86.8% 

2.0% 5.0% 15.0% 20.0% 1.00 0.538 1.358 93.4% 

2.0% 20.0% 15.0% 20.0% 1.00 0.504 1.358 96.2% 

rf = risk-free rate; µ = drift of GBM; σ = volatility of GBM; q = dividend yield; T = simulation horizon 

Experiment parameters: time step number = 90; simulation number = 80,000; return sample pooling = 1 

 

Monte Carlo simulations introduce some variability as new pseudo-random 

number sequences are used for the generation of trajectories. If the tests were repeated, 

this could possibly lead to contradicting conclusions to the Kolmogorov-Smirnov tests. 

To check the robustness of these conclusions, each of the twenty test cases is repeated 
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thirty times to assess how robust the outcomes of the hypothesis testing are. The 

are computed for each trial and a synthetic view representing the experimental 

distribution of p-values is reported

distribution is not uniform and is in fact skewed towards the larger 

as shown). Of those six hundred trials, a single one has a 

significance which represents less than 0.2% of all trials. Furthermore, 95% of trials have 

p-values above 30% and therefore are far

significance, there is thus 

return samples are drawn

Figure 60: Distribution of p-values for 600 Kolmogorov

The second batch of tests deals with the return distributions induced by Merton 

jump diffusion processes.

varying parameters governing jumps: jump arrival rate is varied between

while jump size volatility is varied between 20% and 40%. The ri

varied between 2% and 8%, the drift rate i

yield is varied between 0% and 5%, and the time step is varied betw
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thirty times to assess how robust the outcomes of the hypothesis testing are. The 

are computed for each trial and a synthetic view representing the experimental 

values is reported in Figure 60. Interestingly, the experimental 

distribution is not uniform and is in fact skewed towards the larger p-values (right skewed 

as shown). Of those six hundred trials, a single one has a p-value below the 5% level of 

presents less than 0.2% of all trials. Furthermore, 95% of trials have 

above 30% and therefore are far-away from the critical area. A

thus no reason to reject the null hypothesis that the experimental 

samples are drawn from the theoretical risk-neutral distribution. 

values for 600 Kolmogorov-Smirnov tests (geometric Brownian motion

batch of tests deals with the return distributions induced by Merton 

jump diffusion processes. Table 41 corresponds to twenty test cases with emphasis 

varying parameters governing jumps: jump arrival rate is varied between

while jump size volatility is varied between 20% and 40%. The risk-free rate of return is 

varied between 2% and 8%, the drift rate is varied between 5% and 20%, the dividend 

yield is varied between 0% and 5%, and the time step is varied between four and eight 

thirty times to assess how robust the outcomes of the hypothesis testing are. The p-values 

are computed for each trial and a synthetic view representing the experimental 

, the experimental 

values (right skewed 

value below the 5% level of 

presents less than 0.2% of all trials. Furthermore, 95% of trials have 

away from the critical area. At the 5% level of 

that the experimental 

 

Number of 

cases with 

 p-values less 

than 5% = 1 

 

 

Smirnov tests (geometric Brownian motions) 

batch of tests deals with the return distributions induced by Merton 

test cases with emphasis put on 

varying parameters governing jumps: jump arrival rate is varied between 200% and 800% 

free rate of return is 

varied between 5% and 20%, the dividend 

een four and eight 
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days. The simulations are run for 50,000 different paths leading to samples of 50,000 

returns at each time step. Ten different samples of returns are pooled together and 

weighted using the non-parametric Esscher transform so as to construct a new sample of 

500,000 returns. This sample is reduced in size by ordering and then selecting one return 

every 50 returns to speed-up the verification process. A Kolmogorov-Smirnov test is then 

carried out with this subsample of the risk-neutral experimental sample. The null 

hypothesis for the Kolmogorov-Smirnov test is that the observed sample induced by 

simulations and non-parametric Esscher transformations is drawn from the known 

theoretical distributions. All p-values are substantially above the 5% significance level 

retained for the test and consequently the null hypothesis cannot be rejected. 

 

Table 41: Kolmogorov-Smirnov statistical tests for twenty cases of Merton Jump diffusion process 

rf µ q σ λ δ T 

Kolmogorov 

Smirnov 

statistic 

p-value 

2.0% 5% 0.0% 20% 400% 20% 1.0 0.717 68% 

2.0% 5% 0.0% 20% 600% 20% 1.0 0.619 84% 

2.0% 5% 0.0% 20% 400% 40% 1.0 0.560 91% 

2.0% 5% 0.0% 20% 600% 40% 1.0 0.610 85% 

2.0% 15% 0.0% 20% 400% 20% 1.0 0.866 44% 

2.0% 15% 0.0% 20% 600% 20% 1.0 0.687 73% 

2.0% 15% 0.0% 20% 400% 40% 1.0 0.882 42% 

2.0% 15% 0.0% 20% 600% 40% 1.0 0.647 80% 

2.0% 5% 0.0% 20% 400% 20% 2.0 0.916 37% 

2.0% 5% 0.0% 20% 600% 20% 2.0 0.848 47% 

2.0% 5% 0.0% 20% 400% 40% 2.0 0.716 68% 

2.0% 5% 0.0% 20% 600% 40% 2.0 0.600 86% 

2.0% 15% 0.0% 20% 400% 20% 2.0 0.860 45% 

2.0% 15% 0.0% 20% 600% 20% 2.0 0.551 92% 

2.0% 15% 0.0% 20% 400% 40% 2.0 1.101 18% 

2.0% 15% 0.0% 20% 600% 40% 2.0 0.567 90% 

8.0% 20% 5.0% 40% 400% 20% 1.0 1.006 26% 

8.0% 20% 5.0% 40% 800% 20% 1.0 0.837 49% 
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Table 41 Continued 

8.0% 20% 5.0% 

8.0% 20% 5.0% 

rf = riskless rate of interest; µ = 

 λ = arrival rate of jumps (per year); 

T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 50,000; re

down-sampling factor = 50 

 

As previously done, each of these twen

order to assess the sensitivity and robustness of the conclusions to the Kolmogorov

Smirnov tests. This yields a

the experimental distribution of 

towards the larger p-values (right skewed as shown) and a s

below the 5% level of significance. This repres

consequence, the null hypothesis 

Figure 61: Distribution of p-values for 600 Kolmogorov

processes) 
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40% 400% 40% 1.0 0.833 

40% 800% 40% 1.0 0.638 

= diffusion statistical drift; σ = diffusion volatility; q = dividend yield;

= arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude;

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; return sample

As previously done, each of these twenty test cases is now repeated 

order to assess the sensitivity and robustness of the conclusions to the Kolmogorov

This yields an experiment with a grand total of six hundred trials for which 

distribution of p-values is reported in Figure 61.  It is again skewed 

values (right skewed as shown) and a single case

below the 5% level of significance. This represents less than 0.2% of all trials

nsequence, the null hypothesis cannot be rejected at the 5% level of significance.  

values for 600 Kolmogorov-Smirnov tests (Merton jump diffusion

49% 

81% 

volatility; q = dividend yield; 

= volatility of jump amplitude; 

turn sample pooling = 10; 

repeated thirty times in 

order to assess the sensitivity and robustness of the conclusions to the Kolmogorov-

grand total of six hundred trials for which 

.  It is again skewed 

ingle case has a p-value 

ents less than 0.2% of all trials and as a 

level of significance.   

 

Number of 

cases with 

 p-values less 

than 5% = 1 

 

 

Smirnov tests (Merton jump diffusion 
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Statistical tests – Testing the mean with z-tests and t-tests 

Switching to the first moment of the risk-neutral return distributions, the mean 

values of samples of returns induced by simulation and subsequent change of measure 

with the non-parametric Esscher transform are compared to the expected values of the 

corresponding known risk-neutral distributions. Statistical testing is performed by 

repeating each test case thirty times yielding an experimental average mean and an 

experimental standard error which are then used to carry out two-tailed z-tests and t-tests. 

The null hypothesis for the z-tests and t-tests is the equality of the experimental average 

mean and the expected value of the known risk neutral distribution. 

The first batch of experiments deals with geometric Brownian motions using 

different combinations of parameters (risk free rate, drift, volatility, dividend yield and 

maturities) representative of what would be used for the pricing of real options. The risk-

free rate of return is varied between 2% and 8%, the drift rate is varied between 5% and 

20%, the dividend yield is varied between 0% and 15%, the volatility is varied between 

20% and 40%, and finally, the time step is varied between four and eight days (90 time 

steps with a maturity varied between one and two years). The simulations are run for 

80,000 different paths leading to a sample of 80,000 returns at each time step. For twenty 

test cases of geometric Brownian motions, Table 42 reports the outcomes of the two-

tailed z-tests and t-tests. Approximate z-statistics and t-statistics are computed, and 

corresponding p-values are derived. All p-value estimates are above the 5% significance 

level retained for the test. Consequently, the null hypothesis cannot be rejected at the 5% 

level of significance. As expected, the two-tailed t-tests and the z-tests yield similar 
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approximations of the p-values since both tests are applicable “in the limit” (due to the 

large sample size).  

Table 42: z-tests and t-tests for the mean returns of twenty cases of geometric Brownian motions 

rf µ q σ T 

Experimental 

Sample  

Mean 

 Return 

Experimental 

Sample 

Standard 

Error 

Theoretical 

Mean 

Return 

z-test 

and 

 t-test 

statistic 

z-test 

 p-value 

t-test 

p-value 

2% 5% 0% 20% 1 -2.02E-07 1.45E-07 -3.85E-20 1.393 16% 17% 

2% 20% 0% 20% 1 1.57E-07 1.10E-07 -3.85E-20 1.436 15% 16% 

2% 5% 0% 40% 1 -6.67E-04 5.73E-07 -6.67E-04 0.163 87% 87% 

2% 20% 0% 40% 1 -6.67E-04 6.41E-07 -6.67E-04 0.252 80% 80% 

8% 5% 0% 20% 1 6.67E-04 1.30E-07 6.67E-04 0.076 94% 94% 

8% 20% 0% 20% 1 6.67E-04 1.67E-07 6.67E-04 0.873 38% 39% 

8% 5% 0% 40% 1 2.84E-07 5.88E-07 -1.54E-19 0.484 63% 63% 

8% 20% 0% 40% 1 -6.27E-07 6.12E-07 -1.54E-19 1.025 31% 31% 

2% 5% 0% 20% 2 1.54E-07 1.93E-07 -7.71E-20 0.801 42% 43% 

2% 20% 0% 20% 2 1.24E-07 2.58E-07 -7.71E-20 0.482 63% 63% 

2% 5% 0% 40% 2 -1.33E-03 1.37E-06 -1.33E-03 0.512 61% 61% 

2% 20% 0% 40% 2 -1.33E-03 1.03E-06 -1.33E-03 0.615 54% 54% 

8% 5% 0% 20% 2 1.33E-03 3.20E-07 1.33E-03 1.156 25% 26% 

8% 20% 0% 20% 2 1.33E-03 2.64E-07 1.33E-03 0.668 50% 51% 

8% 5% 0% 40% 2 -1.12E-06 1.05E-06 -3.08E-19 1.063 29% 30% 

8% 20% 0% 40% 2 5.36E-07 9.04E-07 -3.08E-19 0.593 55% 56% 

2% 5% 5% 20% 1 -5.55E-04 1.43E-07 -5.56E-04 0.659 51% 52% 

2% 20% 5% 20% 1 -5.56E-04 1.52E-07 -5.56E-04 1.447 15% 16% 

2% 5% 15% 20% 1 -1.67E-03 1.27E-07 -1.67E-03 0.670 50% 51% 

2% 20% 15% 20% 1 -1.67E-03 1.50E-07 -1.67E-03 0.563 57% 58% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility;  

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; return sample pooling = 1; 

test case repetition = 30 

The second batch of experiments deals with the return distributions induced by 

Merton jump diffusion processes. Table 43 corresponds to twenty test cases with 

emphasis put on varying parameters governing jumps: jump arrival rate is varied between 

200% and 800% while jump size volatility is varied between 20% and 40%. The risk-free 

rate of return is varied between 2% and 8%, the drift rate is varied between 5% and 20%, 
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the dividend yield is varied between 0% and 5%, and the time step is varied between four 

and eight days. The simulations are run for 50,000 different paths leading to a sample of 

50,000 returns at each time step. Ten different samples of returns are pooled together and 

weighted using the non-parametric Esscher transform to construct a new sample of 

500,000 returns. Approximate z-statistics and t-statistics are computed, and 

corresponding p-values are derived.  

Table 43: z-tests and t-tests for the mean returns of twenty cases of Merton jump diffusion processes 

rf µ q σ λ δ T 

Exp. 

Sample 

 Mean 

 Return 

Exp. 

Sample 

Standard 

Error 

Theo. 

Mean 

Return 

z-test 

and 

t-test 

statistics 

z-test 

p-value 

t-test 

p-value 

2% 5% 0% 20% 400% 20% 1 -8.92E-04 2.05E-06 -8.93E-04 0.304 76% 76% 

2% 5% 0% 20% 600% 20% 1 -1.34E-03 2.69E-06 -1.34E-03 0.551 58% 59% 

2% 5% 0% 20% 400% 40% 1 -3.57E-03 7.52E-06 -3.57E-03 0.528 60% 60% 

2% 5% 0% 20% 600% 40% 1 -5.35E-03 9.79E-06 -5.35E-03 0.066 95% 95% 

2% 15% 0% 20% 400% 20% 1 -9.22E-04 1.65E-06 -9.23E-04 0.750 45% 46% 

2% 15% 0% 20% 600% 20% 1 -1.36E-03 2.63E-06 -1.36E-03 0.290 77% 77% 

2% 15% 0% 20% 400% 40% 1 -3.63E-03 5.83E-06 -3.64E-03 1.470 14% 15% 

2% 15% 0% 20% 600% 40% 1 -5.42E-03 9.51E-06 -5.41E-03 0.772 44% 45% 

2% 5% 0% 20% 400% 20% 2 -1.78E-03 2.54E-06 -1.79E-03 0.965 33% 34% 

2% 5% 0% 20% 600% 20% 2 -2.67E-03 3.17E-06 -2.67E-03 0.068 95% 95% 

2% 5% 0% 20% 400% 40% 2 -7.15E-03 9.05E-06 -7.14E-03 0.970 33% 34% 

2% 5% 0% 20% 600% 40% 2 -1.07E-02 1.13E-05 -1.07E-02 0.315 75% 76% 

2% 15% 0% 20% 400% 20% 2 -1.84E-03 3.02E-06 -1.85E-03 0.359 72% 72% 

2% 15% 0% 20% 600% 20% 2 -2.73E-03 2.77E-06 -2.73E-03 0.097 92% 92% 

2% 15% 0% 20% 400% 40% 2 -7.28E-03 1.27E-05 -7.28E-03 0.096 92% 92% 

2% 15% 0% 20% 600% 40% 2 -1.08E-02 1.17E-05 -1.08E-02 0.092 93% 93% 

8% 20% 5% 40% 400% 20% 1 -1.46E-03 2.06E-06 -1.46E-03 0.508 61% 62% 

8% 20% 5% 40% 800% 20% 1 -2.35E-03 2.42E-06 -2.35E-03 1.312 19% 20% 

8% 20% 5% 40% 400% 40% 1 -4.17E-03 1.00E-05 -4.17E-03 0.542 59% 59% 

8% 20% 5% 40% 800% 40% 1 -7.73E-03 1.07E-05 -7.73E-03 0.098 92% 92% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; return sample pooling = 10; 

test case repetition = 30 
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All p-value estimates are above the 5% significance level retained for the test. 

Consequently, the null hypothesis cannot be rejected at the 5% level of significance. 

Again, the t-tests and the z-tests yield similar approximations of the p-values.  

7.3.2 Bootstrapping technique for resampling 

The bootstrap technique has been presented as a means to resample a weighted 

sample leading to a non-weighted sample. In a real options framework, the practitioner 

typically starts by simulating trajectories for the investment value representing its 

possible evolutions over time. Risk-neutralization of these trajectories using the non-

parametric Esscher transform introduces weighting vectors at each time cross-section of 

the trajectories. This results in locally-weighted trajectories which prevents the 

computation of conditional expectation regressions along these trajectories. In turn, this 

prevents the use of the least-squares Monte Carlo algorithm for option pricing purposes. 

The bootstrap technique was introduced as an enabling technique to use the output of the 

non-parametric Esscher transform in a least-squares Monte Carlo option valuation 

algorithm. 

Research Question 1.2.2 – Generating trajectories for finding investment boundaries 

How can algorithms approximating the early-investment boundaries be used in 

conjunction with the non-parametric Esscher risk-neutralization? 

Hypothesis 1.1.4 – Bootstrapping for trajectory generation  

Real options with early-exercise properties may be analyzed using a bootstrapping 

technique to generate risk-neutral trajectories for the evolution of the research and 

development program values via simulations and resampling 
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The purpose of bootstrapping is to construct a new sample from an already 

existing sample featuring desirable properties. In doing so, the bootstrap preserves the 

characteristics as well as the nature of the original distributions. The induced distributions 

are therefore investigated to check whether they also satisfy the risk-neutrality and the 

type-preservation properties.  

Verification process and criteria for success 

Similarly to what was done for the verification of the non-parametric Esscher 

transformation, several tests are performed to verify the implementation of the 

bootstrapping. The first is a qualitative test that visually compares the empirical 

probability distribution induced by the resampling to the empirical probability 

distribution used for the resampling: in other words, the output of the procedure which is 

a non-weighted sample of returns is compared to the input which is a weighted sample of 

returns. This test is considered successful if there is no apparent departure from the 

bisecting line in the corresponding Q-Q plot. The second test is quantitative and uses the 

two-sample Kolmogorov-Smirnov statistical test to confirm whether the input (weighted) 

and output (non-weighted) empirical distributions differ. This test is considered 

successful if the equality of distributions cannot be rejected at a five percent level of 

significance. All these tests are performed for two popular stochastic processes: the 

geometric Brownian motion and the Merton jump-diffusion process. 

Graphical tests 

The first batch of tests deals with the geometric Brownian motion. The stochastic 

process is sampled to generate 80,000 trajectories representing the possible evolution of a 
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development program over time. These trajectories induce samples of 80,000 returns at 

each time step. Four of these samples are pooled together to yield a larger sample of 

320,000 returns and a change of probability measure is performed using the non-

parametric Esscher transform. This new sample of 320,000 weighted returns is 

bootstrapped using the sampling wheel algorithm to yield a new experimental sample of 

20,000 non-weighted returns. The resulting empirical distribution made of 20,000 returns 

is compared to the non-resampled empirical distribution made of 320,000 weighted 

returns and the exercise is repeated for different test cases. Table 45 on page 282 and 

page 283 displays Q-Q plots corresponding to these test cases with the risk-free rate of 

return varied between 2% and 8%, the drift rate varied between 5% and 20%, the 

dividend yield varied between 0% and 15%, the volatility varied between 20% and 40%, 

and finally the time step varied between four and eight days.  

A summary of the results is presented in Table 44 and all but one Q-Q plot exhibit 

loci of quantiles aligned almost perfectly on the bisecting lines. While minor deviations 

appear on some Q-Q plots for extreme quantiles, one of them exhibits some notable 

excess kurtosis (rf =0.08, µ=0.05, q=0.00, σ=0.40, T=1). Performing the test again, this 

excess kurtosis disappears leading to the conclusion that this is probably an artifact of the 

simulation using an imperfect pseudo-random number generator. 

 

 

 

 

 



www.manaraa.com

281 

Table 44: Summary of the bootstrap resampling tests using Q-Q plots with GBM 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1 

Minor deviation 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1 

Minor deviation 

GBM 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1 

Minos deviation 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1 

Notable excess kurtosis 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2 

On bisecting line 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=2 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.05, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.15, 

282 

 
=0.05, q=0.00, σσσσ=0.40, T=1 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=1 rf =0.02, 

 
=0.05, q=0.00, σσσσ=0.40, T=2 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=2 rf =0.02, 

 
=0.05, q=0.15, σσσσ=0.20, T=1 

 
rf =0.02, µµµµ=0.20, q=0.05, σσσσ=0.20, T=1 rf =0.02, 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=1 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=2 

 
=0.02, µµµµ=0.20, q=0.15, σσσσ=0.20, T=1 
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rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, µµµµ=0.05, q=0.00, 

 
rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, µµµµ=0.05, q=0.00, 

rf = riskless rate of interest; µ = diffusion statistical drift; 

Experiment parameters: time step number = 90; simulation number = 80,000; resampling pool number= 4; resampling 

Table 45: Q-Q Plots for verification of the bootstrap technique applied to 
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=0.05, q=0.00, σσσσ=0.40, 

T=1 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, 

 
=0.05, q=0.00, σσσσ=0.40, 

T=2 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, 

diffusion statistical drift; σ = diffusion volatility; q = dividend yield; and T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 80,000; resampling pool number= 4; resampling simulation number = 2

otstrap technique applied to Esscher transformed geometric Brownian motion

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=1 

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=2 

simulation horizon (years) 

simulation number = 20,000 

Esscher transformed geometric Brownian motions 
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The Q-Q plots on page 286 and 287 correspond to experiments for the return 

distributions induced by Merton jump diffusion processes. For these experiments, 

emphasis is put on varying parameters governing jumps: jump arrival rate is varied 

between 200% and 800% while jump size volatility is varied between 20% and 40%. The 

risk-free rate of return is still varied between 2% and 8%, the drift rate is still varied 

between 5% and 20%, the dividend yield is varied between 0% and 5%, and the time step 

is varied between four and eight days. In each experiment, the original sample is made of 

500,000 weighted returns resulting from the pooling of 50,000 simulated returns from ten 

time steps and the subsequent weighting via the non-parametric Esscher transformation. 

This weighted sample is resampled with replacement using the bootstrap procedure to 

generate 100,000 trajectories. At each time cross-section, these trajectories yield a sample 

of 100,000 returns but a subsample of only 10,000 returns is used to construct the 

empirical distribution retained for the test in order to speed-up the verification process. 

The aforementioned empirical distribution is then compared to the empirical distribution 

made of all 500,000 weighted returns. The results are summarized in Table 46. It is 

observed that the Q-Q plots do not “fit” the bisecting line as well as in the previous case 

and small deviations occur. These deviations are nevertheless restricted to the end of the 

distribution tails and are due to the difficulty in capturing rare events (jumps) in 

simulations. Still, most Q-Q plots exhibit loci of quantiles reasonably well aligned on the 

bisecting lines. Besides, the minor deviations appearing in some plots do not exhibit 

consistent behavior and are not repeatable. 
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Table 46: Summary of the bootstrap resampling tests with Q-Q plots for Merton jump diffusion 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1, 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2, 

λ=4.0, γ=-0.02, δ=0.20 
Negative skewness 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2, 

λ=4.0, γ=-0.08, δ=0.40 
Positive skewness 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2, 

λ=6.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2, 

λ=6.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1, 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1, 

λ=4.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1, 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1, 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1, 

λ=6.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2, 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2, 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2, 

λ=8.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2, 

λ=8.0, γ=-0.08, δ=0.40 
Positive skewness 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20,  

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=
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=0.05, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=1 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, 

λλλλ=6.00, 

 
=0.05, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, 

λλλλ=6.00, 

  

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 
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rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.08, µµµµ=0.20, q=0.05, 

λλλλ=4.00, γγγγ=

rf = riskless rate of interest; µ = diffusion statistical drift; 

γ = mean amplitude of jumps; 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; resampling 

Table 47: Q-Q Plots for verification of the bootstrap technique applied to 
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=0.15, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=1 

rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, 

λλλλ=6.00, 

 
=0.15, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, 

λλλλ=6.00, 

 
=0.20, q=0.05, σσσσ=0.40, 

=-0.08, δδδδ=0.40, T=1 

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=8.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.08, 

λλλλ=8.00, 

statistical drift; σ = diffusion volatility; q = dividend yield; λ = arrival rate of jumps (per 

= mean amplitude of jumps; δ= volatility of jump amplitude; and T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; resampling simulation number

down-sampling factor = 10 

otstrap technique applied to Esscher transformed Jump Diffusion processes 

=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 

 
=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 

 
=0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

=8.00, γγγγ=-0.08, δδδδ=0.40, T=1 

= arrival rate of jumps (per year);  

 

simulation number = 100,000; 
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Statistical tests – Kolmogorov-Smirnov test 

If Q-Q plots are helpful to qualitatively compare experimental samples and 

reference distributions, they do not quantify whether the observed deviations are 

statistically significant. Thus, more testing is performed and for each test case, the non-

weighted bootstrapped sample is compared to the original weighted empirical distribution 

using the two-sample Kolmogorov-Smirnov test. The null hypothesis for the 

Kolmogorov-Smirnov test is that the experimental samples induced by simulations and 

non-parametric Esscher transformations are drawn from the original weighted empirical 

distributions. The Kolmogorov-Smirnov test yields test statistics (and p-values) that can 

be compared to critical values in order to assess the likelihood of observing such 

difference between the samples and the original empirical distributions. 

Table 48 corresponds to twenty experiments for the return distributions induced 

by geometric Brownian motions. For these experiments, the risk-free rate of return is 

varied between 2% and 8%, the drift rate is varied between 5% and 20%, the dividend 

yield is varied between 0% and 5%, the volatility is varied between 20% and 40%, and 

the time step is varied between four and eight days. For each experiment, the original 

sample is made of 320,000 weighted returns resulting from the pooling of 80,000 

simulated returns from four time steps and subsequent weighting via the non-parametric 

Esscher transformation. This weighted distribution is bootstrapped to generate 20,000 

trajectories. At each time cross-section, these 20,000 trajectories yield a sample of 20,000 

returns. One such sample of 20,000 returns is used to perform the Kolmogorov-Smirnov 

test. The p-values are computed and all of them are substantially above the 5% 
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significance level retained for the test. Consequently, the null hypothesis cannot be 

rejected at the 5% level of significance. 

Table 48: Kolmogorov-Smirnov statistical tests for twenty cases of geometric Brownian motions 

rf µ q σ T 

Kolmogorov 

Smirnov 

statistic 

p-value 

2.0% 5% 0% 20% 1.0 0.820 51% 

2.0% 20% 0% 20% 1.0 0.735 65% 

2.0% 5% 0% 40% 1.0 0.580 89% 

2.0% 20% 0% 40% 1.0 0.755 62% 

8.0% 5% 0% 20% 1.0 0.955 32% 

8.0% 20% 0% 20% 1.0 0.590 88% 

8.0% 5% 0% 40% 1.0 0.790 56% 

8.0% 20% 0% 40% 1.0 0.760 61% 

2.0% 5% 0% 20% 2.0 0.720 68% 

2.0% 20% 0% 20% 2.0 1.080 19% 

2.0% 5% 0% 40% 2.0 1.065 21% 

2.0% 20% 0% 40% 2.0 0.810 53% 

8.0% 5% 0% 20% 2.0 0.980 29% 

8.0% 20% 0% 20% 2.0 1.005 26% 

8.0% 5% 0% 40% 2.0 0.725 67% 

8.0% 20% 0% 40% 2.0 0.810 53% 

2.0% 5% 5% 20% 1.0 1.100 18% 

2.0% 20% 5% 20% 1.0 0.850 47% 

2.0% 5% 15% 20% 1.0 1.025 24% 

2.0% 20% 15% 20% 1.0 0.565 91% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; 

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; 

resampling pool number= 4; resampling simulation number = 20,000 

 

Monte Carlo simulations can introduce some variability since new pseudo-

random number sequences are used each time a test is carried out. If the tests were 

repeated, this could possibly lead to contradicting conclusions to the two-sample 

Kolmogorov-Smirnov test. To check the robustness of these conclusions, each of the 

twenty test cases is repeated thirty times to help gauge how robust the outcomes of the 
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hypothesis testing are. This yields twenty experiments, each made of thirty repeated tests, 

grand total of six hundred trials. The p-values are computed for each t

distribution of p-values is reported in Figure 62. The distribution 

values looks a bit more evenly distributed than in the previous ver

skewed as shown. Of interest, only three tests in the 600 trials have 

below the 5% level of significance. This represents less than 0.5% of all tests and 

consequently, the null hypothesis cannot be rejected at the 5% level of significance.  

values for 600 Kolmogorov-Smirnov tests (geometric Brownian motion

The second batch of tests deals with the return distributions induced by Merton 

jump diffusion processes. Table 49 corresponds to twenty experiments with emp

on varying parameters governing jumps: jump arrival rate is varied between 200% and 

800% while jump size volatility is varied between 20% and 40%. The risk

return is varied between 2% and 8%, the drift rate is varied between 5% and 2

dividend yield is varied between 0% and 5%, and the time step is varied between four 

and eight days. The simulations are run for 50,000 different paths leading to samples of 

50,000 returns at each time step. Ten different samples of returns are poo

form a pool of 500,000 returns which are weighted using the non-parametric Esscher 

wenty experiments, each made of thirty repeated tests, 

values are computed for each trial and the 

. The distribution 

values looks a bit more evenly distributed than in the previous verification but it is 

skewed as shown. Of interest, only three tests in the 600 trials have p-values 

significance. This represents less than 0.5% of all tests and 

consequently, the null hypothesis cannot be rejected at the 5% level of significance.   

 

Number of 

cases with 

 p-values less 

than 5% = 3 

 
 

Smirnov tests (geometric Brownian motions) 

The second batch of tests deals with the return distributions induced by Merton 

corresponds to twenty experiments with emphasis put 

on varying parameters governing jumps: jump arrival rate is varied between 200% and 

d between 20% and 40%. The risk-free rate of 

return is varied between 2% and 8%, the drift rate is varied between 5% and 20%, the 

dividend yield is varied between 0% and 5%, and the time step is varied between four 

and eight days. The simulations are run for 50,000 different paths leading to samples of 

50,000 returns at each time step. Ten different samples of returns are pooled together to 

parametric Esscher 
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transform. This weighted sample is bootstrapped to generate 100,000 trajectories. At each 

time cross-section, these 100,000 trajectories yield a sample of 100,000 returns. One such 

sample is selected and reduced in size (down-sampling achieved by ordering the returns 

and selecting one return every ten returns) to speed-up the verification process. This new 

subsample of 10,000 non-weighted returns is compared to the original empirical 

distribution of 500,000 weighted returns using the two-sample Kolmogorov-Smirnov test.  

Table 49: Kolmogorov-Smirnov statistical tests for twenty cases of Merton Jump Diffusion processes 

rf µ q σ λ δ T 

Kolmogorov 

Smirnov 

statistic 

p-value 

2.0% 5% 0.0% 20% 400% 20% 1.0 0.792 56% 

2.0% 5% 0.0% 20% 600% 20% 1.0 0.516 95% 

2.0% 5% 0.0% 20% 400% 40% 1.0 0.608 85% 

2.0% 5% 0.0% 20% 600% 40% 1.0 0.594 87% 

2.0% 15% 0.0% 20% 400% 20% 1.0 0.820 51% 

2.0% 15% 0.0% 20% 600% 20% 1.0 0.870 44% 

2.0% 15% 0.0% 20% 400% 40% 1.0 0.700 71% 

2.0% 15% 0.0% 20% 600% 40% 1.0 0.940 34% 

2.0% 5% 0.0% 20% 400% 20% 2.0 0.813 52% 

2.0% 5% 0.0% 20% 600% 20% 2.0 0.940 34% 

2.0% 5% 0.0% 20% 400% 40% 2.0 0.467 98% 

2.0% 5% 0.0% 20% 600% 40% 2.0 0.714 69% 

2.0% 15% 0.0% 20% 400% 20% 2.0 0.566 91% 

2.0% 15% 0.0% 20% 600% 20% 2.0 0.940 34% 

2.0% 15% 0.0% 20% 400% 40% 2.0 0.898 40% 

2.0% 15% 0.0% 20% 600% 40% 2.0 0.636 81% 

8.0% 20% 5.0% 40% 400% 20% 1.0 0.601 86% 

8.0% 20% 5.0% 40% 800% 20% 1.0 0.509 96% 

8.0% 20% 5.0% 40% 400% 40% 1.0 0.955 32% 

8.0% 20% 5.0% 40% 800% 40% 1.0 0.714 69% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; 

resampling simulation number = 100,000; down-sampling ratio = 10 
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values are computed and all of them are substantially above the 5% 

significance level retained for the test. Consequently, the null hypothesis cannot be 

rejected at the 5% level of significance. 

As previously done, the robustness of these conclusions is checked by repeating 

tests: each of the twenty test cases is now repeated thirty times. This yields twenty 

experiments, each made of thirty repeated tests, for a grand total of six hundred trials. 

values are computed for each trial and the aggregate experimental distribution of 

in Figure 63. The distribution of p-values looks more evenly 

distributed than in the previous verification despite still being slightly right

shown. Of interest, only five tests out of the 600 trials have p-values below the 5% level 

of significance. This represents less than 0.9% of all tests and consequently, the null 

jected at the 5% level of significance.   

values for 600 Kolmogorov-Smirnov tests (Jump Diffusion process

values are computed and all of them are substantially above the 5% 

significance level retained for the test. Consequently, the null hypothesis cannot be 

ecked by repeating 

This yields twenty 

experiments, each made of thirty repeated tests, for a grand total of six hundred trials. 

perimental distribution of 

values looks more evenly 

being slightly right-skewed as 

values below the 5% level 

of significance. This represents less than 0.9% of all tests and consequently, the null 

 

Number of 

cases with 

 p-values less 

than 5% = 5 
 

 

Smirnov tests (Jump Diffusion processes) 
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7.3.3 Combined non-parametric Esscher transform and resampling 

The simulation, non-parametric Esscher transform, and resampling have been 

introduced as a way to change the probability measure, and then simulate the evolution of 

complex stochastic processes under the equivalent martingale measure. Thus, the next 

step in the verification process consists in combining the simulation, non-parametric 

Esscher transformation, and resampling using the bootstrap procedure and checking 

whether the combined approach performs adequately. Only then can conclusions be 

drawn about hypothesis 1.1.2 and 1.1.4. 

Verification process and criteria for success 

Similarly to what was done previously, several tests are performed to verify the 

implementation of the combined approach. The first is a qualitative test that visually 

compares the empirical probability distribution induced by the simulation, non-

parametric Esscher transform, and resampling, to the known probability distribution 

under the equivalent martingale measure. This test is considered successful if there is no 

apparent departure from the bisecting line in the Q-Q plot. The second test is quantitative 

and uses the one-sample Kolmogorov-Smirnov statistical test to confirm whether the 

empirical probability distribution and the corresponding theoretical probability 

distribution differ. This test is considered successful if the equality of distributions cannot 

be rejected at a five percent level of significance. The third test is also quantitative and 

uses the z-test and the Student’s t-test to confirm whether the means of these two 

distributions differ in any way. This test is considered successful if the equality of means 

cannot be rejected at a five percent level of significance. All these tests are performed for 
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two popular stochastic processes: the geometric Brownian motion and the Merton jump-

diffusion process. 

Graphical tests 

The experimental distributions obtained via combined simulation, non-parametric 

Esscher transformation, and bootstrapping are compared to the corresponding known 

theoretical distribution using Q-Q plots. The first batch of tests deals with the geometric 

Brownian motion. The stochastic process is sampled to generate 80,000 trajectories 

representing the possible evolution of a development program over time. These 

trajectories induce samples of 80,000 returns at each time step. Four of these samples are 

pooled together to yield a larger sample of 320,000 returns and a change of probability 

measure is performed using the non-parametric Esscher transform. This sample of 

320,000 weighted returns is bootstrapped using the sampling wheel algorithm to yield 

20,000 new trajectories. These trajectories induce a sample of 20,000 non-weighted 

returns at each time step. One such sample is selected and compared to the theoretical 

return distribution under the equivalent martingale measure. Table 51 on page 296 and 

297 displays several plots corresponding to twenty test cases with the risk free rate of 

return varied between 2% and 8%, the drift rate varied between 5% and 20%, the 

dividend yield varied between 0% and 15%, the volatility varied between 20% and 40% 

and finally the time step varied between four and eight days. 

A summary of the results is provided in Table 50. All Q-Q plots exhibit loci of 

quantiles aligned almost perfectly on the bisecting lines. While minor deviations appear 

on some Q-Q plots, these deviations are restricted to extreme quantiles at the far-end of 

the distribution tails (usually first and last three quantiles in several thousands).  Besides, 
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when the tests are repeated and new Q-Q plots are graphed, these minor deviations often 

disappear and reappear randomly. These deviations are thus not repeatable and, as such, 

are just artifacts of the simulations. 

Table 50: Summary of the combined approach tests using Q-Q plots with GBM 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1 

Minor deviation 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2 

Minor deviation 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2 

Minor deviation 

GBM 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1 

Minor deviation 

GBM 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1 

Minor deviation 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1 

Minor deviation 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2 

On bisecting line 

GBM 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2 

On bisecting line 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, T=2 rf =0.02, µµµµ=0.05, q=0.00, 

 
rf =0.02, µµµµ=0.05, q=0.05, σσσσ=0.20, T=1 rf =0.02, µµµµ=0.05, q=0.15, 
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=0.05, q=0.00, σσσσ=0.40, T=1 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=1 rf =0.02, 

 
=0.05, q=0.00, σσσσ=0.40, T=2 

 
rf =0.02, µµµµ=0.20, q=0.00, σσσσ=0.20, T=2 rf =0.02, 

 
=0.05, q=0.15, σσσσ=0.20, T=1 

 
rf =0.02, µµµµ=0.20, q=0.05, σσσσ=0.20, T=1 rf =0.02, 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=1 

 
=0.02, µµµµ=0.20, q=0.00, σσσσ=0.40, T=2 

 
=0.02, µµµµ=0.20, q=0.15, σσσσ=0.20, T=1 
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rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, µµµµ=0.05, q=0.00, 

 
rf =0.08, µµµµ=0.05, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, µµµµ=0.05, q=0.00, 

rf = riskless rate of interest; µ = diffusion statistical drift; 

Experiment parameters: time step number = 90; simulation number = 80,000; resampling poo

Table 51: Q-Q Plots for verification of the combined approach for

 

 

297 

 
=0.05, q=0.00, σσσσ=0.40, 

T=1 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=1 

rf =0.08, 

 
=0.05, q=0.00, σσσσ=0.40, 

T=2 

 
rf =0.08, µµµµ=0.20, q=0.00, σσσσ=0.20, 

T=2 

rf =0.08, 

= diffusion statistical drift; σ = diffusion volatility; q = dividend yield; and T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 80,000; resampling pool number= 4; resampling simulation number

combined approach for geometric Brownian motions 

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=1 

 
=0.08, µµµµ=0.20, q=0.00, σσσσ=0.40, 

T=2 

simulation horizon (years) 

simulation number = 20,000 
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The Q-Q plots in Table 53 pages 300 and 301 correspond to experiments with 

return distributions induced by Merton jump diffusion processes. For these experiments, 

emphasis is put on varying parameters governing jumps: the jump arrival rate is varied 

between 200% and 800% while the jump size volatility is varied between 20% and 40%. 

The risk-free rate of return is still varied between 2% and 8%, the drift rate is still varied 

between 5% and 20%, the dividend yield is varied between 0% and 5%, and the time step 

is varied between four and eight days. In each experiment, Monte Carlo simulations are 

used to generate 50,000 trajectories. A sample of 500,000 weighted returns is constructed 

from the pooling of 50,000 simulated returns from ten different time steps and weighting 

is performed with the non-parametric Esscher transform. This sample of weighted returns 

is bootstrapped using the sampling wheel algorithm to generate 100,000 trajectories. At 

each time cross-section, these 100,000 trajectories yield a sample of 100,000 returns. To 

speed-up the verification, only one return every ten returns is selected for the construction 

of Q-Q plots.   

A summary of the results is provided in Table 52. It is observed that the Q-Q plots 

do not perfectly “fit” the bisecting line and small deviations occur. For the most part, 

these deviations are restricted to the extreme end of the distribution tails and are due to 

the difficulty in capturing rare events in the simulations (jumps). In addition, the minor 

deviations appearing in some of the plots do not have consistent patterns and cannot be 

reproduced during repeated experiments. Moreover, in two experiments, there is a 

notable departure from the bisecting line. These two experiments are investigated further 

with the Kolmogorov-Smirnov test to check the statistical significance of the departure 

from the bisecting line. It is worth noting that Q-Q plots seem to improve as the arrival 
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rate of jumps increases: this is due to more frequent jumps that are therefore easier to 

capture in the simulations. Despite all this, most Q-Q plots exhibit loci of quantiles 

reasonably well aligned on the bisecting lines. 

Table 52: Summary of the combined approach tests with Q-Q plots for Merton jump diffusion 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=1 

λ=4.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=1 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=1 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=1 

λ=6.0, γ=-0.08, δ=0.40 
Notable deviation 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.20, T=2 

λ=4.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.02, µ=0.05, 

q=0.00, σ=0.40, T=2 

λ=4.0, γ=-0.08, δ=0.40 
Notable deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.20, T=2 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.00, σ=0.40, T=2 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.05, σ=0.20, T=1 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.05, 

q=0.15, σ=0.20, T=1 

λ=4.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.02, µ=0.20, 

q=0.05, σ=0.20, T=1 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.02, µ=0.20, 

q=0.15, σ=0.20, T=1 

λ=6.0, γ=-0.08, δ=0.40 
Minor deviation 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=1 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=1 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=1 

λ=6.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=1 

λ=6.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.20, T=2 

λ=4.0, γ=-0.02, δ=0.20 
On bisecting line 

Merton JD 

rf =0.08, µ=0.05, 

q=0.00, σ=0.40, T=2 

λ=4.0, γ=-0.08, δ=0.40 
On bisecting line 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.20, T=2 

λ=8.0, γ=-0.02, δ=0.20 
Minor deviation 

Merton JD 

rf =0.08, µ=0.20, 

q=0.00, σ=0.40, T=2 

λ=8.0, γ=-0.08, δ=0.40 
On bisecting line 
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rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20,  

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, µµµµ=0.05, q=0.00, 

λλλλ=4.00, γγγγ=

 

300 

 
=0.05, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=1 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, 

λλλλ=6.00, 

 
=0.05, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, 

λλλλ=6.00, 

  

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 

 
=0.02, µµµµ=0.05, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 
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rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, µµµµ=0.15, q=0.00, 

λλλλ=4.00, γγγγ=

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=4.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.08, µµµµ=0.20, q=0.05, 

λλλλ=4.00, γγγγ=

rf = riskless rate of interest; µ = diffusion statistical drift; 

γ = mean amplitude of jumps; 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; resampling draws = 100,

Table 53: Q-Q Plots for verification of the combined approach for

 

301 

=0.15, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=1 

rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.02, 

λλλλ=6.00, 

 
=0.15, q=0.00, σσσσ=0.20, 

=-0.08, δδδδ=0.40, T=2 

 
rf =0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

λλλλ=6.00, γγγγ=-0.02, δδδδ=0.20, T=2 

rf =0.02, 

λλλλ=6.00, 

 
=0.20, q=0.05, σσσσ=0.40, 

=-0.08, δδδδ=0.40, T=1 

 
rf =0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

λλλλ=8.00, γγγγ=-0.02, δδδδ=0.20, T=1 

rf =0.08, 

λλλλ=8.00, 

statistical drift; σ = diffusion volatility; q = dividend yield; λ = arrival rate of jumps (per year); 

= mean amplitude of jumps; δ= volatility of jump amplitude; and T = simulation horizon (years)

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; resampling draws = 100,

down-sampling factor = 10 

combined approach for Merton jump diffusion processes 

=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=1 

 
=0.02, µµµµ=0.15, q=0.00, σσσσ=0.20, 

=6.00, γγγγ=-0.08, δδδδ=0.40, T=2 

 
=0.08, µµµµ=0.20, q=0.05, σσσσ=0.40, 

=8.00, γγγγ=-0.08, δδδδ=0.40, T=1 

= arrival rate of jumps (per year);  

 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number= 10; resampling draws = 100,000; 
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Statistical tests – Kolmogorov-Smirnov test 

The experimental distributions obtained via combined simulation, non-parametric 

Esscher transformation, and bootstrapping are compared to the corresponding theoretical 

distribution using Kolmogorov-Smirnov tests. 

Table 54 corresponds to twenty experiments with the return distributions induced 

by geometric Brownian motions. For these experiments, the risk-free rate of return is 

varied between 2% and 8%, the drift rate is varied between 5% and 20%, the dividend 

yield is varied between 0% and 5%, the volatility is varied between 20% and 40%, and 

the time step is varied between four and eight days. In each experiment, Monte Carlo 

simulations are used to generate 80,000 trajectories. A sample of 320,000 weighted 

returns is constructed from the pooling of 80,000 simulated returns from four different 

time steps. It is subsequently weighted with the non-parametric Esscher transformation 

and then bootstrapped to generate 20,000 trajectories. At each time cross-section, these 

20,000 trajectories yield a sample of 20,000 returns. One such sample is used to carry out 

the one-sample Kolmogorov-Smirnov test. The null hypothesis for the test is that the 

experimental sample is drawn from the known theoretical distribution. The p-values are 

computed and all of them are above the 5% significance level retained for the test. Thus, 

the null hypothesis cannot be rejected at the 5% level of significance. Interestingly, p-

values are more evenly distributed than in previous tests and some of them are actually 

close to the critical region. 
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Table 54: Kolmogorov-Smirnov statistical tests for twenty cases of geometric Brownian motions 

rf µ q σ T 

Kolmogorov 

Smirnov 

statistic 

p-value 

2.0% 5% 0% 20% 1.0 0.813 52% 

2.0% 20% 0% 20% 1.0 0.877 43% 

2.0% 5% 0% 40% 1.0 0.594 87% 

2.0% 20% 0% 40% 1.0 0.827 50% 

8.0% 5% 0% 20% 1.0 0.700 71% 

8.0% 20% 0% 20% 1.0 0.580 89% 

8.0% 5% 0% 40% 1.0 0.700 71% 

8.0% 20% 0% 40% 1.0 0.453 99% 

2.0% 5% 0% 20% 2.0 0.870 44% 

2.0% 20% 0% 20% 2.0 0.919 37% 

2.0% 5% 0% 40% 2.0 1.223 10% 

2.0% 20% 0% 40% 2.0 1.216 10% 

8.0% 5% 0% 20% 2.0 0.735 65% 

8.0% 20% 0% 20% 2.0 1.181 12% 

8.0% 5% 0% 40% 2.0 0.679 75% 

8.0% 20% 0% 40% 2.0 1.089 19% 

2.0% 5% 5% 20% 1.0 1.110 17% 

2.0% 20% 5% 20% 1.0 0.976 30% 

2.0% 5% 15% 20% 1.0 1.131 15% 

2.0% 20% 15% 20% 1.0 0.566 91% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; 

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; 

resampling pool number = 4; resampling simulation number = 20,000 

 

Monte Carlo simulations introduce some variability as new pseudo-random 

number sequences are used and new distributions are generated each time a test is carried 

out. To check the robustness of these conclusions, each of the twenty test cases is 

repeated thirty times to help gauge how robust the outcomes of the hypothesis testing are. 

This yields twenty experiments, each made of thirty repeated tests, for a grand total of six 

hundred trials. The p-values are computed for each trial and the aggregate experimental 

distribution of p-values is reported in Figure 64. The distribution of p-values looks more 
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the 600 trials have p-values below the 5% level of significance. This represents less than 

3.2% of all tests and consequently, the null hypothesis

of significance.   

Figure 64: Distribution of p-values for 600 Kolmogorov
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evenly distributed than in previous verifications. Of interest, only nineteen trials out of 

values below the 5% level of significance. This represents less than 

3.2% of all tests and consequently, the null hypothesis cannot be rejected at the 5%

 

values for 600 Kolmogorov-Smirnov tests (geometric Brownian motion

The second batch of tests deals with the return distributions induced by Merton 
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verification, down-sampling is performed by ordering returns and selecting one every ten 

returns. This yields a subsample of 10,000 returns which are used to perform the 

Kolmogorov-Smirnov test. The null hypothesis for the test is that the experimental 

sample is drawn from the known theoretical distribution. The p-values are computed and 

all of them are above the 5% significance level retained for the test. Thus, the null 

hypothesis cannot be rejected at the 5% level of significance.  

Table 55: Kolmogorov-Smirnov statistical tests for twenty cases of Merton Jump Diffusion processes 

rf µ q σ λ δ T 

Kolmogorov 

Smirnov 

statistic 

p-value 

2.0% 5% 0.0% 20% 400% 20% 1.0 1.010 26% 

2.0% 5% 0.0% 20% 600% 20% 1.0 0.790 56% 

2.0% 5% 0.0% 20% 400% 40% 1.0 0.780 58% 

2.0% 5% 0.0% 20% 600% 40% 1.0 0.660 78% 

2.0% 15% 0.0% 20% 400% 20% 1.0 0.630 82% 

2.0% 15% 0.0% 20% 600% 20% 1.0 0.850 47% 

2.0% 15% 0.0% 20% 400% 40% 1.0 0.650 79% 

2.0% 15% 0.0% 20% 600% 40% 1.0 1.060 21% 

2.0% 5% 0.0% 20% 400% 20% 2.0 0.930 35% 

2.0% 5% 0.0% 20% 600% 20% 2.0 0.910 38% 

2.0% 5% 0.0% 20% 400% 40% 2.0 0.750 63% 

2.0% 5% 0.0% 20% 600% 40% 2.0 1.080 19% 

2.0% 15% 0.0% 20% 400% 20% 2.0 0.740 64% 

2.0% 15% 0.0% 20% 600% 20% 2.0 1.100 18% 

2.0% 15% 0.0% 20% 400% 40% 2.0 0.700 71% 

2.0% 15% 0.0% 20% 600% 40% 2.0 0.680 74% 

8.0% 20% 5.0% 40% 400% 20% 1.0 0.620 84% 

8.0% 20% 5.0% 40% 800% 20% 1.0 0.640 81% 

8.0% 20% 5.0% 40% 400% 40% 1.0 1.060 21% 

8.0% 20% 5.0% 40% 800% 40% 1.0 0.990 28% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000;  

resampling pool number = 10; resampling simulation number = 100,000; down-sampling ratio = 10 
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computed for the 600 trials and reported in Table 56. It appears that the bootstrap 

procedure is most critical. 

Table 56: Correlation between final results and intermediate results  

 

Correlation between 

final p-values and p-

values after initial 

Esscher transform 

Correlation between 

final p-values and p-

values after bootstrap 

resampling 

Geometric Brownian Motion -0.040 0.620 

Merton Jump Diffusion -0.047 0.493 

Statistical tests – Testing the mean with z-tests and t-tests 

Switching to the first moment of these distributions, the expected values of the 

empirical distributions obtained via simulation, non-parametric Esscher transformation, 

and bootstrap are compared to the expected values of corresponding theoretical 

distributions. Statistical testing is performed by repeating each test case thirty times 

yielding an experimental average mean and an experimental standard error which are 

used to carry out two-tailed z-tests and two-tailed t-tests. The null hypothesis for the z-

tests and t-tests is that the experimental average mean equals the expected value of the 

known theoretical distribution. 

The first batch of experiments deals with geometric Brownian motions using 

different combinations of parameters (risk free rate, drift, volatility, dividend yield, and 

maturities) representative of what would be used for the pricing of real options. The risk-

free rate of return is varied between 2% and 8%, the drift rate is varied between 5% and 

20%, the dividend yield is varied between 0% and 15%, the volatility is varied between 

20% and 40%, and finally, the time step is varied between four and eight days (90 time 

steps with a maturity varied between one and two years). Table 57 highlights the results 

of twenty experiments: approximate p-values are computed and all of them are above 5%.  



www.manaraa.com

308 

Consequently, the null hypothesis cannot be rejected at the 5% level of 

significance. As expected, the t-test and the z-test yield similar approximations of the p-

values since both tests are applicable “in the limit” (due to the large sample size).  

Table 57: z-tests and t-tests for the mean returns of twenty cases of geometric Brownian motions 

rf µ q σ T 

Experimental 

Sample 

Mean 

 Return 

Experimental 

Sample 

Standard 

Error 

Theoretical 

Mean 

Return 

z-test 

and 

 t-test 

statistic 

z-test 

 p-value 

t-test 

p-value 

2% 5% 0% 20% 1 -4.34E-05 2.75E-05 -3.85E-20 1.579 11% 13% 

2% 20% 0% 20% 1 2.24E-05 3.33E-05 -3.85E-20 0.674 50% 51% 

2% 5% 0% 40% 1 -6.60E-04 4.98E-05 -6.67E-04 0.135 89% 89% 

2% 20% 0% 40% 1 -7.08E-04 5.58E-05 -6.67E-04 0.750 45% 46% 

8% 5% 0% 20% 1 6.72E-04 2.97E-05 6.67E-04 0.173 86% 86% 

8% 20% 0% 20% 1 6.89E-04 2.29E-05 6.67E-04 0.974 33% 34% 

8% 5% 0% 40% 1 -6.59E-05 5.02E-05 -1.54E-19 1.314 19% 20% 

8% 20% 0% 40% 1 -9.56E-05 7.28E-05 -1.54E-19 1.315 19% 20% 

2% 5% 0% 20% 2 3.59E-05 4.77E-05 -7.71E-20 0.752 45% 46% 

2% 20% 0% 20% 2 2.94E-05 3.51E-05 -7.71E-20 0.837 40% 41% 

2% 5% 0% 40% 2 -1.36E-03 8.63E-05 -1.33E-03 0.271 79% 79% 

2% 20% 0% 40% 2 -1.30E-03 7.95E-05 -1.33E-03 0.442 66% 66% 

8% 5% 0% 20% 2 1.27E-03 3.87E-05 1.33E-03 1.760 8% 9% 

8% 20% 0% 20% 2 1.37E-03 3.34E-05 1.33E-03 0.985 32% 33% 

8% 5% 0% 40% 2 -4.90E-05 7.41E-05 -3.08E-19 0.661 51% 51% 

8% 20% 0% 40% 2 4.49E-05 7.28E-05 -3.08E-19 0.617 54% 54% 

2% 5% 5% 20% 1 -5.66E-04 3.05E-05 -5.56E-04 0.339 73% 74% 

2% 20% 5% 20% 1 -5.58E-04 3.02E-05 -5.56E-04 0.067 95% 95% 

2% 5% 15% 20% 1 -1.71E-03 3.38E-05 -1.67E-03 1.385 17% 18% 

2% 20% 15% 20% 1 -1.67E-03 3.45E-05 -1.67E-03 0.095 92% 93% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; 

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; 

resampling pool number = 4; resampling draws = 20,000; down-sampling ratio = 1 

 

The second batch of experiments deals with the return distributions induced by 

Merton jump diffusion processes. Table 58 highlights the results of twenty experiments 

with emphasis put on varying parameters governing jumps: jump arrival rate is varied 

between 200% and 800% while jump size volatility is varied between 20% and 40%. The 
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risk-free rate of return is still varied between 2% and 8%, the drift rate is still varied 

between 5% and 20%, the dividend yield is varied between 0% and 5%, and the time step 

is varied between four and eight days. Each experiment consists of thirty repeated trials 

which enable the computation of the sample mean, the standard error, and in turn the z-

statistic and t-statistic. The null hypothesis for the z-test and t-test is that the experimental 

sample mean is equal to the theoretical expected value.  

Table 58: z-tests and t-tests for the mean returns of twenty cases of Merton jump diffusion processes 

rf µ q σ λ δ T 

Exp. 

Sample 

 Mean 

 Return 

Exp. 

Sample 

Standard 

Error 

Theo. 

Mean 

Return 

t-test 

and 

z-test 

statistics 

z-test 

p-value 

t-test 

p-value 

2% 5% 0% 20% 400% 20% 1 -9.03E-04 2.31E-05 -8.93E-04 0.434 66% 67% 

2% 5% 0% 20% 600% 20% 1 -1.38E-03 3.46E-05 -1.34E-03 1.217 22% 23% 

2% 5% 0% 20% 400% 40% 1 -3.57E-03 5.32E-05 -3.57E-03 0.066 95% 95% 

2% 5% 0% 20% 600% 40% 1 -5.38E-03 5.97E-05 -5.35E-03 0.509 61% 61% 

2% 15% 0% 20% 400% 20% 1 -9.26E-04 2.41E-05 -9.23E-04 0.107 92% 92% 

2% 15% 0% 20% 600% 20% 1 -1.37E-03 3.12E-05 -1.36E-03 0.218 83% 83% 

2% 15% 0% 20% 400% 40% 1 -3.63E-03 5.71E-05 -3.64E-03 0.197 84% 84% 

2% 15% 0% 20% 600% 40% 1 -5.47E-03 3.77E-05 -5.41E-03 1.657 10% 11% 

2% 5% 0% 20% 400% 20% 2 -1.78E-03 3.35E-05 -1.79E-03 0.242 81% 81% 

2% 5% 0% 20% 600% 20% 2 -2.75E-03 4.66E-05 -2.67E-03 1.641 10% 11% 

2% 5% 0% 20% 400% 40% 2 -7.21E-03 7.41E-05 -7.14E-03 0.939 35% 36% 

2% 5% 0% 20% 600% 40% 2 -1.06E-02 8.96E-05 -1.07E-02 1.281 20% 21% 

2% 15% 0% 20% 400% 20% 2 -1.88E-03 3.97E-05 -1.85E-03 0.852 39% 40% 

2% 15% 0% 20% 600% 20% 2 -2.78E-03 3.69E-05 -2.73E-03 1.551 12% 13% 

2% 15% 0% 20% 400% 40% 2 -7.21E-03 8.28E-05 -7.28E-03 0.854 39% 40% 

2% 15% 0% 20% 600% 40% 2 -1.07E-02 7.84E-05 -1.08E-02 1.347 18% 19% 

8% 20% 5% 40% 400% 20% 1 -1.41E-03 3.56E-05 -1.46E-03 1.275 20% 21% 

8% 20% 5% 40% 800% 20% 1 -2.34E-03 4.02E-05 -2.35E-03 0.201 84% 84% 

8% 20% 5% 40% 400% 40% 1 -4.08E-03 5.44E-05 -4.17E-03 1.751 8% 9% 

8% 20% 5% 40% 800% 40% 1 -7.64E-03 5.18E-05 -7.73E-03 1.605 11% 12% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pool number = 10; 

resampling simulation number = 100,000; down-sampling ratio = 10 
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Approximate p-values are computed and all of them are above 5%. Consequently, 

the null hypothesis cannot be rejected at the 5% level of significance. As expected, the t-

tests and the z-tests yield similar approximations of the p-values.  

7.3.4 Least-squares Monte Carlo for trigger boundary generation 

The difficulty with analyzing path-dependent options is that: it requires the 

knowledge of the early-exercise boundary position; this, in turn, needs backward-type of 

analysis to estimate continuation values, but Monte Carlo simulation is a forward-type of 

analysis generating possible evolutions of the underlying from a starting point. The least-

squares Monte Carlo method of Longstaff-Schwartz was previously identified as a 

promising method that resolves the aforementioned problem: the method first performs a 

regression of the continuation value using cross-sectional information from the 

simulation; this regressed continuation value is then compared with the immediate 

exercise value to derive the early-investment policy. In a real options framework, the 

continuation value of the business prospect is the value attained if the decision to invest is 

delayed by at least one time step. This value is compared to the value of the business 

prospect if the investment were to be made immediately. By performing a comparison for 

each trajectory and at each time step in the simulation, it is possible to construct the 

trigger policy and identify regions where early-exercise is optimal.  

Research Question 1.2.1 – Early-investment boundaries to detect trigger events 

How can early-investment boundaries be defined for real options featuring early-exercise 

possibilities and how can they be used for the identification of precursors of successful 

development programs? 
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Hypothesis 1.1.3 – Least-squares Monte Carlo approach for real options 

Real options with early-exercise properties may be analyzed using a least-squares Monte 

Carlo approach to both estimate their value and derive the early-investment policy and 

the optimal-investment boundary. The optimal-investment boundary may be used by 

decision-makers to substantiate the need to invest now, delay, or abandon an investment. 

Verification process and criteria for success 

The verification procedure for the generation of the early-exercise boundary is 

different from what was done in the preceding sections. Indeed, the verification no longer 

tests the equality of distributions or the equality of properties of distributions but rather 

the similarity between curves. To test the similarity between the early-exercise boundary 

generated by the proposed method and a reference boundary obtained via a finite-

difference scheme, four metrics are used for the different test cases. Two metrics are used 

to compare the global shape of the two curves; one metric tracks the maximum error 

between the curves; and one metric assesses the initial error which is the present time 

error. The first metric is the Hausdorff distance which measures how similar two curves 

are. This metric yields an absolute distance (not a relative one) which may be difficult to 

gauge. However, all test cases involve options with strike prices of one and thus trigger 

boundaries are never far from one. This means that there are no scaling issues and that 

normalization is not required. A test is considered successful if the distance between the 

two curves does not exceed 0.05. The second metric is the more usual root mean square 

error (RMSE) which is again not normalized due to the absence of scaling issues. A test 

is considered successful if the RMSE between the two curves is less than 0.05. The third 

metric is the maximum relative error which tracks the largest error between the two 
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curves. A test is considered successful if the absolute value of the maximum relative error 

is less than 5%. Finally, the last metric is the initial relative error between the two curves. 

Tracking this error is important since this error is contemporary to the immediate 

investment decision-making process. A test is considered successful if the absolute value 

of the initial relative error is less than 5%. All tests are performed for the geometric 

Brownian motion. 

Similarity tests 

The experimental early-exercise boundaries obtained via combined simulation, 

non-parametric Esscher transformation, bootstrapping, and least-squares Monte Carlo are 

compared to the corresponding reference early-exercise boundaries obtained via the 

solving of partial differential equations with a finite-difference solver.  The geometric 

Brownian motion is simulated to generate 30,000 trajectories. These trajectories induce 

samples of 30,000 returns at each time step. Four of these samples are pooled together to 

yield a larger sample of 120,000 returns and a change of probability measure is 

performed using the non-parametric Esscher transform. The sample of 120,000 weighted 

returns is bootstrapped using the sampling wheel algorithm to yield 30,000 new 

trajectories. These trajectories are used in the improved least-squares Monte Carlo 

algorithm to generate the trigger boundary. Twenty different test cases of geometric 

Brownian motions are studied using typical parameters of real options analyses: the 

maturity is set at one year, the risk-free rate is set at 2%, the dividend yield is set at 5%, 

the drift rate is varied between 5% and 20%, the volatility is varied between 20% and 

40%, and finally the spot to strike ratio is varied between 0.8 and 1.2. Each of these test 

cases is repeated thirty times to assess the variability of results, resulting in six hundred 
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trials. For each trial, the Hausdorff distance, the root mean square error, the maximum 

relative error magnitude, and the initial relative error magnitude are reported respectively 

in Figure 66, Figure 67, Figure 68, and Figure 69.  Looking at these results indicates that 

for each similarity metric retained, all outcomes from the trials are below the verification 

threshold. With no trial failing any of the tests, the verification is considered successful. 

 
Figure 66: Hausdorff distance between experimental and reference trigger boundaries for 600 cases 

of geometric Brownian motions 

 
Figure 67: RMSE of the experimental trigger boundary for 600 cases of geometric Brownian motions 

0.00 0.01 0.02 0.03 0.04 0.05 0.06

S/K=0.8, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1
S/K=0.9, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1.1, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1.2, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=0.8, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=0.9, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1.1, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1.2, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=0.8, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=0.9, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1.1, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1.2, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=0.8, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=0.9, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1.1, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1.2, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1

Hausdorff Distance

- Verification threshold 
- Test case Hausdorff distance

0.00 0.01 0.02 0.03 0.04 0.05 0.06

S/K=0.8, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1
S/K=0.9, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1.1, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1.2, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=0.8, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=0.9, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=1.1, rf = 0.02, m=0.05, q=0.05, s=0.2, T=1

S/K=1.2, rf = 0.02, m=0.2, q=0.05, s=0.2, T=1
S/K=0.8, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=0.9, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1.1, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1.2, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=0.8, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=0.9, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1
S/K=1.1, rf = 0.02, m=0.05, q=0.05, s=0.4, T=1

S/K=1.2, rf = 0.02, m=0.2, q=0.05, s=0.4, T=1

Root Mean Square Error

- Verification threshold
- Test case RMSE



www.manaraa.com

314 

 
Figure 68: Maximum relative error of the experimental trigger boundary for 600 cases of geometric 

Brownian motions 

 
Figure 69: Initial relative error of the experimental trigger boundary for 600 cases of geometric 

Brownian motions 
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7.3.5 Least-squares Monte Carlo for option valuation 

Besides using the updated least-squares Monte Carlo method to construct the 

early-exercise boundary, the method can be used to carry out the valuation of real options 

featuring early-exercise possibilities, the valuation of real options without early-exercise 

possibilities, and the valuation of real options on underlying assets following exotic 

stochastic processes. Indeed, Monte Carlo simulations can generate many kind of 

trajectories including some representing the realization of complex stochastic processes 

such as those featuring jumps. At the same time, simpler Monte Carlo based methods can 

value vanilla European options, while the Monte Carlo based method of Longstaff-

Schwartz resolves the problem of the continuation value estimation for path-dependent 

American options.  

Research Question 1.1.1 — Enlarging the domain of applicability of real options 

How can the domain of application of current state-of-the-art real options methodologies 

be extended to include corporate investments with value processes that do not follow 

classic geometric random walks? 

Hypothesis 1.1.1 – Monte Carlo methods for real options analyses 

Monte Carlo methods and lattice-based methods present the most promising approaches 

to solve for the arbitrage-free value of corporate investments featuring flexibility. Within 

the context of the aerospace industry, Monte Carlo methods offer the ability to integrate 

well with other probabilistic methods. 

Verification process and criteria for success 

The hypothesis states that real options can be evaluated using Monte-Carlo 

methods. Furthermore, the hypothesis states that using Monte Carlo simulation enables 
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the use of more sophisticated models that may be better suited to represent a complex 

reality. This is purely a technical claim that can be verified using canonical examples by 

checking the prices of options obtained with Monte Carlo based methods to the prices of 

options obtained with more established methods. These more established methods 

include the Black Scholes closed-form solution for European options on assets following 

a geometric Brownian motion, its modified version for European options on assets 

following a jump-diffusion process, as well as the solution obtained with a finite-

difference scheme for the valuation of American options on assets following a geometric 

Brownian motion. Thus, this is a quantitative verification and a successful verification is 

achieved if the pricing of European and path-dependent American options is accurate and 

exhibits low variability during repeated experiments. The accuracy test is performed by 

straightforward comparisons. For the test to be successful, option prices have to be within 

5% of the reference option price obtained with established methods. The repeatability is 

checked by repeating each test several times which by virtue of Monte Carlo simulations 

will lead to slightly different option prices. Obviously, less variability is better and for the 

test to be successful, the standard error (i.e. the standard deviation of the sample of option 

prices) must yield a confidence interval no larger than 10% of the option price. This will 

ensure that the real option price can be approximated consistently with the proposed 

approach. In order to prove that Monte Carlo based methods are more versatile and can 

handle a wider variety of stochastic processes than traditional methods, the tests are 

performed for two classes of stochastic processes: the traditional geometric Brownian 

motion as well as a more sophisticated jump-diffusion process. Indeed, typical real 

options methods are unable to handle processes with jumps or require extensive and 
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complex modifications while Monte Carlo based algorithm can indifferently handle cases 

with and without jumps. 

Results 

The experimental real option prices obtained via combined simulation, non-

parametric Esscher transformation, bootstrapping, and least-squares Monte Carlo are 

compared to reference prices. A geometric Brownian motion is first simulated to generate 

30,000 trajectories. These trajectories induce samples of 30,000 returns at each time step. 

Four of these samples are pooled together to yield a larger sample of 120,000 returns and 

a change of probability measure is performed using the non-parametric Esscher 

transform. The sample of 120,000 weighted returns is bootstrapped using the sampling 

wheel algorithm to yield 30,000 new trajectories. These trajectories are used in the 

improved least-squares Monte Carlo algorithm to obtain the value of the option. Twenty 

different test cases of geometric Brownian motions are studied using typical parameters 

of real options analyses: the maturity is set at one year, the risk-free rate is set at 2%, the 

dividend yield is set at 5%, the drift rate is varied between 5% and 20%, the volatility is 

varied between 20% and 40%, and finally the spot to strike ratio is varied between 0.8 

and 1.2. Each of these test cases is repeated thirty times to assess the variability of results, 

resulting in six hundred trials. For each trial, the relative error of the European option 

price, the corresponding relative width of the 95% confidence interval of the European 

option price, the relative error of the American option price, and finally the relative width 

of the 95% confidence interval of the American option price are reported respectively in 

Figure 70, Figure 71, Figure 72, and Figure 73. 
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Figure 70: Relative error of European call option prices with underlying following a geometric 

Brownian motion (reference Black Scholes formula) 

 
Figure 71: Relative width of 95% confidence interval for European call option prices on underlying 

following a geometric Brownian motion 
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Figure 72: Relative error of American call option prices with underlying following a geometric 

Brownian motions (reference finite-difference solver) 

 
Figure 73: Relative width of 95% confidence interval for American call option prices on underlying 

following a geometric Brownian motion 
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and because the same trajectories are used for the pricing exercise, results are not 

independent and some correlation in both the option prices and their errors is expected.  

In addition, it appears that for the European and American options, there are two trials for 

which the option price relative error is beyond the 5% accuracy threshold. This is not 

much given the other 598 successful trials.  

As for the analysis of variability, all trials exhibit 95% confidence intervals that 

have a relative width of less than 10% of the option price and therefore meet the 

verification criteria. Interestingly, the combination of low volatility and small spot to 

strike ratio seems to exhibit the widest relative confidence interval. The reason for this is 

that these test cases result in few trajectories being in the money and the Monte Carlo 

simulation based pricing scheme becomes less efficient (the more trajectories end up in 

the money, the better as more data points can be used to compute the expectation of the 

option payoffs). In any case, owing to the number of trials that pass the accuracy and the 

variability tests, the verification is considered successful. 

Another batch of test is provided in Table 59 for European types of option. This 

time, the real option value is reported for twenty experiments with stochastic processes 

following geometric Brownian motions. For these experiments, the risk free rate of return 

is varied between 2% and 8%, the drift rate is varied between 5% and 20%, the dividend 

yield is varied between 0% and 5%, the volatility is varied between 20% and 40%, and 

the time step is varied between four and eight days. In each experiment, Monte Carlo 

simulations are used to generate 80,000 trajectories. A sample of 320,000 weighted 

returns is constructed from the pooling of 80,000 simulated returns from four time steps 

and subsequent weighting via the non-parametric Esscher transform. This weighted 



www.manaraa.com

321 

distribution is bootstrapped to generate 20,000 trajectories. European option payoffs are 

estimated at maturity for each of these trajectories and discounted back to the present 

time. Most of the experimental results are very close to the expected theoretical results 

and the relative error never exceeds 2%. 

Table 59: European option prices for twenty cases of geometric Brownian motions 

�G rf µ q σ T 

Experimental 

European 

Option Price 

Theoretical 

European 

Option 

Price 

Relative 

Difference 

1 2.0% 5% 0% 20% 1.0 0.0705 0.0694 1.71% 

1 2.0% 20% 0% 20% 1.0 0.0691 0.0694 -0.33% 

1 2.0% 5% 0% 40% 1.0 0.1471 0.1472 -0.09% 

1 2.0% 20% 0% 40% 1.0 0.1466 0.1472 -0.46% 

1 8.0% 5% 0% 20% 1.0 0.0435 0.0442 -1.50% 

1 8.0% 20% 0% 20% 1.0 0.0445 0.0442 0.66% 

1 8.0% 5% 0% 40% 1.0 0.1155 0.1170 -1.27% 

1 8.0% 20% 0% 40% 1.0 0.1183 0.1170 1.11% 

1 2.0% 5% 0% 20% 2.0 0.0927 0.0917 1.05% 

1 2.0% 20% 0% 20% 2.0 0.0912 0.0917 -0.64% 

1 2.0% 5% 0% 40% 2.0 0.1991 0.1993 -0.08% 

1 2.0% 20% 0% 40% 2.0 0.2005 0.1993 0.60% 

1 8.0% 5% 0% 20% 2.0 0.0466 0.0463 0.59% 

1 8.0% 20% 0% 20% 2.0 0.0466 0.0463 0.67% 

1 8.0% 5% 0% 40% 2.0 0.1396 0.1403 -0.49% 

1 8.0% 20% 0% 40% 2.0 0.1417 0.1403 1.00% 

1 2.0% 5% 5% 20% 1.0 0.0924 0.0923 0.14% 

1 2.0% 20% 5% 20% 1.0 0.0924 0.0923 0.09% 

1 2.0% 5% 15% 20% 1.0 0.1460 0.1480 -1.30% 

1 2.0% 20% 15% 20% 1.0 0.1498 0.1480 1.23% 

S = underlying asset price; K = strike price; rf = riskless rate of interest; µ = diffusion statistical drift; 

σ = diffusion volatility; q = dividend yield; T = option maturity (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; resampling pooling = 4; 

resampling draws = 20,000; down-sampling ratio = 1 

 

Monte Carlo simulations introduce some variability in the computation of option 

prices as new pseudo random number sequences are used each time an experiment is 

carried out. To check the robustness of these results, each experiment is now made of 
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thirty repeated trials which enable the computation of the sample mean, standard error, z-

statistic and t-statistic. The null hypothesis for the z-test and t-test is that the experimental 

average option price is equal to the theoretical option price. Approximate p-values are 

computed and all but one of them are above the 5% significance level.  

Table 60: z-test and t-test for European option – Repeated cases of geometric Brownian motions 

�G rf µ q σ T 

Exp. 

Sample 

Mean 

European 

Option Price 

Exp. 

Sample 

Standard 

Error 

Theo. 

European 

Option 

Price 

z-test 

and 

 t-test 

statistic 

z-test 

 p-value 

t-test 

p-value 

1 2% 5% 0% 20% 1 6.95E-02 1.38E-04 6.94E-02 1.347 18% 19% 

1 2% 20% 0% 20% 1 6.92E-02 1.01E-04 6.94E-02 1.508 13% 14% 

1 2% 5% 0% 40% 1 1.47E-01 1.73E-04 1.47E-01 1.249 21% 22% 

1 2% 20% 0% 40% 1 1.47E-01 2.13E-04 1.47E-01 0.173 86% 86% 

1 8% 5% 0% 20% 1 4.41E-02 8.51E-05 4.42E-02 1.208 23% 24% 

1 8% 20% 0% 20% 1 4.43E-02 8.98E-05 4.42E-02 1.461 14% 15% 

1 8% 5% 0% 40% 1 1.17E-01 1.71E-04 1.17E-01 0.139 89% 89% 

1 8% 20% 0% 40% 1 1.17E-01 2.04E-04 1.17E-01 1.819 7% 8% 

1 2% 5% 0% 20% 2 9.15E-02 1.64E-04 9.17E-02 1.415 16% 17% 

1 2% 20% 0% 20% 2 9.16E-02 1.64E-04 9.17E-02 0.700 48% 49% 

1 2% 5% 0% 40% 2 1.99E-01 2.44E-04 1.99E-01 0.720 47% 48% 

1 2% 20% 0% 40% 2 1.99E-01 2.85E-04 1.99E-01 0.608 54% 55% 

1 8% 5% 0% 20% 2 4.64E-02 1.25E-04 4.63E-02 1.079 28% 29% 

1 8% 20% 0% 20% 2 4.64E-02 1.13E-04 4.63E-02 0.652 51% 52% 

1 8% 5% 0% 40% 2 1.40E-01 2.27E-04 1.40E-01 0.017 99% 99% 

1 8% 20% 0% 40% 2 1.40E-01 2.37E-04 1.40E-01 0.068 95% 95% 

1 2% 5% 5% 20% 1 9.21E-02 1.30E-04 9.23E-02 1.185 24% 25% 

1 2% 20% 5% 20% 1 9.26E-02 1.39E-04 9.23E-02 2.086 4% 5% 

1 2% 5% 15% 20% 1 1.48E-01 1.44E-04 1.48E-01 0.237 81% 81% 

1 2% 20% 15% 20% 1 1.48E-01 1.89E-04 1.48E-01 0.175 86% 86% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; 

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; 

resampling pooling = 4; resampling draws = 20,000; down-sampling ratio = 1 

How to deal with this failed experiment? Is this a fluke or a symptom of 

something more profound? In order to answer this question, the history surrounding this 

experiment is revisited. It indicates that the p-values for the t-test and z-test comparing 
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the sample mean expected value to the theoretical expected value were not abnormally 

low (95% for both tests). The average option price is also not really off with an error of 

just over 0.3%. However, the standard error is rather low (standard deviation of 8.03E-04 

leading to a standard error of 1.47E-04 for an option price of 9.26E-02). Consequently, 

this failed experiment is the combination of a high biased option price and low variability 

between the thirty results. It is believed that this is a one-case event due to a single 

outlying option price within the thirty trials probably resulting from a bad seed in one 

Monte Carlo simulation. To verify this assertion, the experiment consisting of thirty trials 

is run again and the new p-values of 53% is indeed much larger than the 5% level of 

significance as highlighted in Table 61. In addition, it is not statistically unlikely that one 

experiment fails out of a total of twenty experiments since that represents exactly 5% of 

all experiments.  

Consequently, the null hypothesis is not rejected at the 5% level of significance. 

As expected, the t-test and the z-test yield similar approximations of the p-values since 

both tests are applicable “in the limit”. 

Table 61: New z-test and t-test for the European option price of the repeated experiment 

�G rf µ q σ T 

Exp. 

Sample 

Mean 

European 

Option Price 

Exp. 

Sample 

Standard 

Error 

Theo. 

European 

Option 

Price 

z-test 

and 

 t-test 

statistic 

z-test 

 p-value 

t-test 

p-value 

1 2% 20% 5% 20% 1 9.24E-02 1.33E-04 9.23E-02 0.633 53% 53% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; 

q = dividend yield; T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 80,000; 

resampling pooling = 4; resampling draws = 20,000; down-sampling ratio = 1 
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Next, a jump-diffusion process is first simulated to generate 50,000 trajectories. 

These trajectories induce samples of 50,000 returns at each time step. Ten of these 

samples are pooled together to yield a larger sample of 500,000 returns and a change of 

probability measure is performed using the non-parametric Esscher transform. The 

sample of 500,000 weighted returns is bootstrapped using the sampling wheel algorithm 

to yield 50,000 new trajectories. These trajectories are used in the improved least-squares 

Monte Carlo algorithm to obtain the value of the option. Twenty different test cases of 

jump-diffusion are studied with emphasis on parameters governing jumps: the maturity is 

set at one year, the risk-free rate is set at 2%, the dividend yield is set at 5%, the drift rate 

is varied between 5% and 20%, the volatility is varied between 20% and 40%, and finally 

the spot to strike ratio is varied between 0.8 and 1.2. Each of these test cases is repeated 

thirty times to assess the variability of results, resulting in six hundred trials. For each 

trial, the relative error of the European option price, the corresponding relative width of 

the 95% confidence interval of the European option price, and finally the relative width 

of the 95% confidence interval of the American option price are reported respectively in 

Figure 74, Figure 75 and Figure 76. 

Despite the traditional difficulty in simulating rare events with Monte Carlo 

simulations, the results are very good. A vast majority of tests exhibits relative errors 

below the threshold retained and no test exceeds the threshold retained for the relative 

width of the 95% confidence interval. One of the reasons for this successful verification 

is the use of Monte Carlo simulations with a high number of replications to ensure that 

jumps are reasonably well represented in the sample that is used for the bootstrap 

resampling procedure.  
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Figure 74: Relative error of European real call option prices with underlying following a Merton 

jump diffusion process (reference modified Merton-Black Scholes formula) 
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Figure 75: Relative width of 95% confidence interval for European real call option prices on 

underlying following a Merton jump-diffusion process 
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Figure 76: Relative width of 95% confidence interval for American call option prices on underlying 
following a Merton jump diffusion process 
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S/K=1, rf = 0.02, d=0.05, q=0.05, s=0.2, l=8, d=0.2, T=1

S/K=1.1, rf = 0.02, d=0.05, q=0.05, s=0.2, l=8, d=0.2, T=1
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S/K=0.8, rf = 0.02, d=0.2, q=0.05, s=0.2, l=4, d=0.2, T=1
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S/K=1.1, rf = 0.02, d=0.2, q=0.05, s=0.2, l=8, d=0.2, T=1

S/K=1.2, rf = 0.02, d=0.2, q=0.05, s=0.2, l=8, d=0.2, T=1

S/K=0.8, rf = 0.02, d=0.2, q=0.05, s=0.2, l=8, d=0.4, T=1

S/K=0.9, rf = 0.02, d=0.2, q=0.05, s=0.2, l=8, d=0.4, T=1
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S/K=1.2, rf = 0.02, d=0.2, q=0.05, s=0.2, l=8, d=0.4, T=1

95% confidence interval relative width

- Verification threshold 
- Relative width of American option price 
95% confidence interval
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between 5% and 20%, the dividend yield is varied between 0% and 5%, and the time step 

is varied between four and eight days. In each experiment, Monte Carlo simulations are 

used to generate 50,000 trajectories. A sample of 500,000 weighted returns is constructed 

from the pooling of 50,000 simulated returns from ten time steps and subsequent 

weighting via the non-parametric Esscher transform. This weighted distribution is 

bootstrapped to generate 100,000 trajectories. European option payoffs are estimated at 

maturity for each of these trajectories and discounted back to the present time.  

Table 62: European option prices for twenty cases of Merton jump diffusion processes �G rf µ q σ λ δ T 

Experimental 

European 

Option Price 

Theoretical 

European 

Option Price 

Relative 

Difference 

1 2.0% 5% 0.0% 20% 400% 20% 1.0 0.1607 0.1618 -0.67% 

1 2.0% 5% 0.0% 20% 600% 20% 1.0 0.1929 0.1935 -0.29% 

1 2.0% 5% 0.0% 20% 400% 40% 1.0 0.2977 0.2962 0.51% 

1 2.0% 5% 0.0% 20% 600% 40% 1.0 0.3571 0.3604 -0.92% 

1 2.0% 15% 0.0% 20% 400% 20% 1.0 0.1634 0.1637 -0.21% 

1 2.0% 15% 0.0% 20% 600% 20% 1.0 0.1927 0.1947 -1.05% 

1 2.0% 15% 0.0% 20% 400% 40% 1.0 0.2985 0.2978 0.25% 

1 2.0% 15% 0.0% 20% 600% 40% 1.0 0.3588 0.3612 -0.66% 

1 2.0% 5% 0.0% 20% 400% 20% 2.0 0.2240 0.2217 1.03% 

1 2.0% 5% 0.0% 20% 600% 20% 2.0 0.2646 0.2645 0.03% 

1 2.0% 5% 0.0% 20% 400% 40% 2.0 0.4065 0.4048 0.41% 

1 2.0% 5% 0.0% 20% 600% 40% 2.0 0.4853 0.4845 0.15% 

1 2.0% 15% 0.0% 20% 400% 20% 2.0 0.2239 0.2242 -0.13% 

1 2.0% 15% 0.0% 20% 600% 20% 2.0 0.2661 0.2661 0.00% 

1 2.0% 15% 0.0% 20% 400% 40% 2.0 0.4066 0.4066 0.00% 

1 2.0% 15% 0.0% 20% 600% 40% 2.0 0.4857 0.4855 0.05% 

1 8.0% 20% 5.0% 40% 400% 20% 1.0 0.1954 0.1937 0.87% 

1 8.0% 20% 5.0% 40% 800% 20% 1.0 0.2392 0.2386 0.25% 

1 8.0% 20% 5.0% 40% 400% 40% 1.0 0.3029 0.3029 0.00% 

1 8.0% 20% 5.0% 40% 800% 40% 1.0 0.4029 0.4030 -0.03% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pooling = 10; 

resampling draws = 100,000; down-sampling ratio = 10 
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Most of the experimental results are very close to the expected theoretical results 

and the relative error never exceeds 1.1%. Monte Carlo simulations introduce some 

variability in the computation of option prices and therefore the robustness of these 

results is checked. Each experiment is now made of thirty repeated trials which enable 

the computation of the sample mean, standard error, z-statistic and t-statistic. The null 

hypothesis for the z-test and t-test is that the experimental average option price is equal to 

the theoretical option price. Approximate p-values are computed and all of them are 

above the 5% significance level. Consequently, the null hypothesis cannot be rejected at 

the 5% level of significance. As expected, the t-test and the z-test yield similar 

approximations of the p-values since both tests are applicable “in the limit”. 

From these tables, the results are better and there are several reasons for this 

observation: first, the number of replications has been significantly increased, going from 

30,000 replications to 100,000 replications in order to increase the likelihood of capturing 

jumps in the simulation, second, the arrival rate of jumps has been increased to go from 

between one and two in the first experiment to between four and eight. In the end, if 

jumps are to be modeled it is probably because these jumps are quite frequent and it is 

questionable whether having a jump-diffusion process with a single jump per year is 

worth investigating. In any cases, increasing the number of simulation trajectories has 

resolved the accuracy and variability issues first encountered. As a result, the verification 

of the hypothesis is successful.  
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Table 63: z-tests and t-tests for European options – Repeated cases of Merton jump diffusion 

processes 

�G rf µ q σ λ δ T 

Exp. 

Sample 

Mean 

European 

Option 

Price 

Exp. 

Sample 

Standard 

Error 

Theo. 

European 

Option 

Price 

z-test 

and 

 t-test 

statistic 

z-test 

 p-value 

t-test 

p-value 

1 2.0% 5% 0.0% 20% 400% 20% 1.0 1.62E-01 1.67E-04 1.62E-01 0.651 52% 52% 

1 2.0% 5% 0.0% 20% 600% 20% 1.0 1.94E-01 1.90E-04 1.93E-01 0.795 43% 43% 

1 2.0% 5% 0.0% 20% 400% 40% 1.0 2.96E-01 3.10E-04 2.96E-01 0.249 80% 80% 

1 2.0% 5% 0.0% 20% 600% 40% 1.0 3.60E-01 3.24E-04 3.60E-01 0.102 92% 92% 

1 2.0% 15% 0.0% 20% 400% 20% 1.0 1.63E-01 1.44E-04 1.64E-01 1.532 13% 14% 

1 2.0% 15% 0.0% 20% 600% 20% 1.0 1.94E-01 1.93E-04 1.95E-01 1.257 21% 22% 

1 2.0% 15% 0.0% 20% 400% 40% 1.0 2.97E-01 2.30E-04 2.98E-01 1.806 7% 8% 

1 2.0% 15% 0.0% 20% 600% 40% 1.0 3.61E-01 3.22E-04 3.61E-01 0.474 64% 64% 

1 2.0% 5% 0.0% 20% 400% 20% 2.0 2.22E-01 1.72E-04 2.22E-01 0.274 78% 79% 

1 2.0% 5% 0.0% 20% 600% 20% 2.0 2.65E-01 1.64E-04 2.64E-01 0.735 46% 47% 

1 2.0% 5% 0.0% 20% 400% 40% 2.0 4.05E-01 2.73E-04 4.05E-01 0.512 61% 61% 

1 2.0% 5% 0.0% 20% 600% 40% 2.0 4.84E-01 2.55E-04 4.85E-01 1.562 12% 13% 

1 2.0% 15% 0.0% 20% 400% 20% 2.0 2.24E-01 2.18E-04 2.24E-01 0.149 88% 88% 

1 2.0% 15% 0.0% 20% 600% 20% 2.0 2.66E-01 1.66E-04 2.66E-01 0.470 64% 64% 

1 2.0% 15% 0.0% 20% 400% 40% 2.0 4.06E-01 3.02E-04 4.07E-01 0.343 73% 73% 

1 2.0% 15% 0.0% 20% 600% 40% 2.0 4.85E-01 2.79E-04 4.85E-01 0.289 77% 77% 

1 8.0% 20% 5.0% 40% 400% 20% 1.0 1.94E-01 1.54E-04 1.94E-01 0.275 78% 79% 

1 8.0% 20% 5.0% 40% 800% 20% 1.0 2.39E-01 1.58E-04 2.39E-01 1.632 10% 11% 

1 8.0% 20% 5.0% 40% 400% 40% 1.0 3.03E-01 3.34E-04 3.03E-01 0.440 66% 66% 

1 8.0% 20% 5.0% 40% 800% 40% 1.0 4.03E-01 2.89E-04 4.03E-01 0.208 84% 84% 

rf = riskless rate of interest; µ = diffusion statistical drift; σ = diffusion volatility; q = dividend yield; 

λ = arrival rate of jumps (per year); γ = -σ2/2 = jump amplitude; δ= volatility of jump amplitude; 

T = simulation horizon (years) 

Experiment parameters: time step number = 90; simulation number = 50,000; resampling pooling = 10; 

resampling draws = 100,000; down-sampling ratio = 10 

7.3.6 Real options for staggered development valuation 

Besides using the updated least-squares Monte Carlo method to analyze path-

dependent options, the method can also be modified and used to carry out the valuation of 

compound or nested real options. A compound option is an option on another option: this 

means that the exercise of one option gives the possibility to exercise another option 
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later. Compound options are suitable for the analysis of staggered development programs 

with decision tollgates where the decision to fund one phase of the program opens the 

possibility of funding the following phase of the program. Compound options can be of 

the European or American type. For real options applications in the aerospace industry, 

compound options of the European-European and American-European types are probably 

more appropriate as the initial funding decision may be rushed but subsequent phases 

(detailed design, certification and testing) cannot really be started before the previous 

phase is completed. This leads to the following method hypothesis. However, only a 

single aspect of this method hypothesis is verified in this section, namely that real options 

can be used to analyze staggered investments with several decision tollgates. This partial 

verification provides the ground for a proper validation in Chapter 9. 

Hypothesis 1 — Real options for valuation with flexibility and uncertainty 

Within the context of aerospace research and development programs, real options 

methods enable the development of value-based design frameworks accounting for the 

staggered nature of investments and the value created by managerial flexibility in 

uncertain environments. 

Verification process and criteria for success 

One technical aspect of this hypothesis is that real options can be used to evaluate 

staggered investments. This technical claim can be verified using canonical examples by 

checking the prices of options obtained with the proposed method against the prices of 

options obtained with a more established method. In particular, Geske [203] provides a 
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formula to value European-European compound options on assets following a geometric 

Brownian motion and this formula is used for verification purposes.  

Unfortunately, American-European options seem to have been left out of the 

literature and no benchmark can be found to check the results of the proposed model. 

Similarly, no formula is available for the pricing of compound options on underlying 

assets following a Merton jump diffusion process. Therefore, a heuristic verification is 

used for these cases.  The absence of analytical formula for these cases is probably due to 

the complexity of compound options. Indeed, unlike simpler options where the 

underlying can be modeled directly, the underlying used for the first option is the nested 

option process which is a complex stochastic process. In particular, this process is not 

stationary since its volatility increases as the option maturity gets closer. This means that 

the proposed methodology needs to be updated to account for the non-stationarity of the 

underlying process1. In addition, since the underlying for the first option is the nested 

option process, its value (i.e. the value of the nested option) must be computed at each 

time step for every trajectory in the Monte Carlo simulation. This is equivalent to 

performing nested Monte Carlo simulations which are notoriously computationally 

demanding. 

To circumvent this problem, the continuity of option prices with respect to the 

underlying is invoked to reduce the number of computations performed. At each time 

cross-section in the Monte Carlo simulation, the minimum and maximum values of the 

nested option underlying asset are identified. These values of the underlying asset yield a 

                                                 

1 Sample of returns under the equivalent martingale measure can no longer be pooled across different time 
steps as the properties of the samples are different. The non-parametric Esscher transform and the bootstrap 
resampling procedure must be applied individually at each and every time step. 
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range which is then evenly discretized to get evenly-spaced points. At each of these 

points, the value of the nested option is computed. Once the value of the nested option is 

known for each of the evenly-distributed points, the option price for all other points can 

be interpolated using a simple linear regression. The procedure is repeated next for each 

and every time step in the simulation. 

However, for European-European options on assets following a geometric 

Brownian motion, the availability of a formula enables a quantitative verification and a 

successful verification is achieved if the pricing is accurate and exhibits low variability 

during repeated experiments. The accuracy test is performed by straightforward 

comparisons. For the test to be successful, option prices have to be within 5% of the 

reference option price obtained with the Geske analytical formula. The repeatability is 

checked by repeating each test several times which, by virtue of Monte Carlo 

simulations, leads to slightly different option prices. Obviously, less variability is better 

and for the test to be successful, the standard error must yield a confidence interval no 

larger than 10% of the option price. This will ensure that the real option price can be 

approximated consistently with the proposed approach.  

Results 

The experimental real option prices obtained via combined simulation, non-

parametric Esscher transformation, bootstrapping, and least-squares Monte Carlo are 

compared to reference prices. A geometric Brownian motion is first simulated to generate 

100,000 trajectories. These trajectories induce samples of 100,000 returns at each time 

step. A change of probability measure is performed using the non-parametric Esscher 

transform. The sample of 100,000 weighted returns is bootstrapped using the sampling 
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wheel algorithm to yield 50,000 new trajectories. These trajectories are used in the 

improved least-squares Monte Carlo algorithm to obtain the value of the option. Twenty 

five different test cases of geometric Brownian motions are studied using typical 

parameters of real options analyses: the maturities are set to one year and two years, the 

risk-free rate is set at 2%, the dividend yield is set at 5%, the drift rate is varied between 

5% and 20%, the volatility is varied between 20% and 40%, the spot is varied between 

1.7 and 2.3, and the strikes are set between 0.8 and 1.2 for the two options. Each of these 

test cases is repeated thirty times to assess the variability of results, resulting in seven 

hundred and fifty trials. For each trial, the relative error of the European option price and 

the corresponding relative width of the 95% confidence interval of the European option 

price are reported respectively in Figure 77 and Figure 78.  

Investigations of the results indicate that no trial yields a relative error larger than 

5%. As for the analysis of variability, all trials exhibit 95% confidence intervals that have 

a relative width of less than 10% of the option price and therefore meet the verification 

criteria. Interestingly, small ratios of the spot price to the sum of the two strike prices 

seem to exhibit the widest relative confidence interval. The reason for this is that these 

test cases have few trajectories being in-the-money and the Monte Carlo simulation-

based pricing scheme becomes less efficient. In any case, owing to the number of trials 

that pass the accuracy and the variability tests, the verification is considered successful. 
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Figure 77: Relative error of compound European-European call option prices with underlying 

following a geometric Brownian motion (reference Geske formula) 

 
Figure 78: Relative width of 95% confidence interval for compound European-European call option 

prices on underlying following a geometric Brownian motion 
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S=1.9, K1=1.1, K2=0.9, rf=0.02, d=0.2, q=0.05, s=0.2, T1=1, T2=2

S=2, K1=1.1, K2=0.9, rf=0.02, d=0.05, q=0.05, s=0.2, T1=1, T2=2

S=2.1, K1=1.1, K2=0.9, rf=0.02, d=0.2, q=0.05, s=0.2, T1=1, T2=2

S=2.3, K1=1.1, K2=0.9, rf=0.02, d=0.05, q=0.05, s=0.2, T1=1, T2=2

S=1.7, K1=1.2, K2=0.8, rf=0.02, d=0.05, q=0.05, s=0.2, T1=1, T2=2

S=1.9, K1=1.2, K2=0.8, rf=0.02, d=0.2, q=0.05, s=0.2, T1=1, T2=2

S=2, K1=1.2, K2=0.8, rf=0.02, d=0.05, q=0.05, s=0.2, T1=1, T2=2

S=2.1, K1=1.2, K2=0.8, rf=0.02, d=0.2, q=0.05, s=0.2, T1=1, T2=2

S=2.3, K1=1.2, K2=0.8, rf=0.02, d=0.05, q=0.05, s=0.2, T1=1, T2=2

95% confidence interval relative width

- Verification threshold 
- Relative width of compound European-European 
option price 95% confidence interval
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CHAPTER 8: PROOF OF CONCEPT DESCRIPTION AND 

IMPLEMENTATION 

 

Following the development of a novel real options methodology and the 

verification of the technical hypotheses, this section introduces a proof-of-concept study 

that is used to validate the method. The aim of this study is to demonstrate the 

applicability of the proposed methodology to real-world problems to solve relevant issues 

faced by decision-makers. Doing so, the proof-of-concept study is used to validate some 

of the method and modeling hypotheses formulated previously. The study highlights 

some typical issues faced by decision-makers when developing technology retrofits such 

as Performance Improvement Packages (PIP). Performance improvement packages are 

proposed by manufacturers as a means to improve the operating economics of currently 

out of production aircraft. This chapter starts with a description of the technologies 

featured in the package and describes briefly the development timeline and the 

competitive setting. Next, to analyze the economic viability of the technology retrofit, the 

operating economics of an aircraft and engine combination are studied using the point of 

view of aircraft operators. Owing to the lack of publicly available tool to perform this 

analysis, a new aircraft and engine evaluation model dubbed i-CARE for Integrated Cost 

And Revenue Estimation is developed. Because i-CARE is at the core of the proof-of-

concept application, significant efforts are made to ensure that the model is properly 

calibrated and verified. The research proceeds next with the development of a simple 

market model to estimate the adoption of the performance improvement package by 

operators worldwide. Finally, the section concludes with the identification and calibration 
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of market uncertainties that impact most the viability of the performance improvement 

package development.  

8.1 Presentation of an industry problem to be investigated 

In this pilot study, a Performance Improvement Package (PIP) is being proposed 

as a means to improve the operating economics of a currently out of production aircraft 

engine. The engine manufacturer has identified a gap in its development stream which 

makes it possible to develop, certify, and produce the package. Decision-makers have to 

identify whether the conditions are currently optimal for the commercial launch of this 

product and whether it makes sense to commit resources to this development now. If not, 

there is a wide window to actually launch the development. The manufacturer can then 

delay the launch of the package development in order to wait for trigger events that will 

ensure that the development program has a high likelihood of commercial success.  

8.1.1 Performance Improvement Package (PIP) 

Performance Improvement Packages are nothing new in the aircraft and engine 

manufacturing industry and have been often proposed to operators as a stop-gap measure 

to improve the economics of aircraft currently on the market. For instance, McDonnell 

Douglas introduced a series of PIP [161] in the 1990’s to improve the aerodynamics, 

reduce the drag, and improve the fuel-burn of its flagship MD-11 aircraft as the aircraft 

and its engines were not meeting promised specifications at entry into service. These 

packages can also be used to rejuvenate a design that is slowly aging by infusing some 

refinements to keep it competitive. Following experimentations with the Tech56 

technology demonstrator, CFM International announced in 2007 the first delivery of a 
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Tech Insertion package, and in 2011, announced the availability of a new performance 

improvement package for the CFM56-5B3 [162]. Both of these aimed at reducing NOx 

emissions, improving fuel-burn of the engine, and extending its time on-wing (flight time 

without any engine shop visit). This was achieved by replacing some modules in the 

engine with newer ones: these changes included a new combustor, new 3D-shaped 

turbine blades, and tighter tolerances for the fan skew angles. Similarly in 2009, Boeing 

introduced refinements to its 777 flagship aircraft that airlines could buy as a package to 

increase the aircraft range and payload [163]. This was achieved by reshaping vortex 

generators on the upper surface of the wing, optimizing the ram air intake system to 

reduce drag, as well as drooping ailerons by two degrees while in flight. More recently, 

Airbus launched in 2013 the Sharklet retrofit [164] for already in-service aircraft of the 

A320 family. This retrofit consists in new advanced wingtip devices to reduce fuel-burn 

by up to four percent, reduce carbon emissions, and increase the operating life of the 

aircraft. 

In the pilot study under investigation, an engine manufacturer is investigating the 

potential development of a performance improvement retrofit package for one of its 

engine. The package includes several technologies to reduce maintenance costs and 

decrease fuel-burn and carbon emissions. There are three reasons motivating this 

proposed development: demand by airlines for more efficient aircraft and engines to 

reduce their exposure to fluctuating energy prices, desire by manufacturers to increase the 

operating life of their engines by making them more competitive with other offerings 

from the competition, and identification of a gap in the development stream that needs to 

be filled. 



www.manaraa.com

339 

8.1.2 Performance Improvement Package development timeline 

Like many developments in the aerospace industry, the program is articulated 

around several phases, each separated by a milestone during which a technical and 

market review is performed. The purpose of these milestones is to monitor the 

development program and decide whether funding the subsequent phase of development 

is economically viable. In this research, the development is articulated around four 

distinct phases: a marketing and conceptual study phase, a preliminary design phase, a 

detailed design phase, and finally the production phase. Because of the numerous 

uncertainties surrounding the development, the manufacturer hesitates between two 

developments: a light performance improvement package (dubbed PIP-Light) featuring 

mostly mature off-the-shelves technologies, and a more involved performance 

improvement package (dubbed PIP-Involved) featuring new state-of-the-art technologies. 

The two packages require different development efforts and therefore have different 

development timelines as highlighted in Figure 79.  

 
Figure 79: Development timeline for PIP-Light and PIP-Involved 
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8.1.3 Technology description 

Two performance improvement packages are under analysis. The first retrofit 

package, denoted PIP-Light, is a lower scope improvement. The PIP-Light retrofit 

benefits from a short time to market and a cheaper acquisition cost by infusing into the 

engine new technologies that have matured recently. It is rushed to the market in order to 

counter the perceived threat of other engine manufacturers willing to enter the lucrative 

engine maintenance and part replacement business. Indeed, engine manufacturers make 

significant amount of money by servicing and providing replacement parts for the 

engines they manufacture. However, other manufacturers and maintenance providers are 

technically able to design replacement parts and sell them at a cheaper price in order to 

undercut the original equipment manufacturer. Indeed, under the Parts Manufacturer 

Approval (PMA), any manufacturer can get design and production approvals for 

modification and replacement parts to be sold and installed on type-certificated aircraft 

and engines. In fact, as long as PMA manufacturers do not infringe on patents, these 

replacement parts can be installed in lieu of the original, provided proof is given that the 

part is as good as or better than the original one. Furthermore, Aircraft Commerce [208] 

quotes Rob Baumann of HEICO Parts Group who indicates that PMA parts “start at 50-

60% of the OEMs [price] but sometimes are as low as 25%, meaning a discount of 

75%”.  

As a result, the PIP-Light is introduced as a quick upgrade of the turbofan engine 

to pre-empt potential competition by offering replacement parts that improve the 

operating economics of the turbofan engine. The limited-scope retrofit brings noticeable, 

yet limited, improvements by infusing off-the-shelf technologies that can be brought to 
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the market within two years depending on market conditions. In some sense, the retrofit 

is similar to the “Time On Wing” upgrade package [209] offered by CFMI to CFM56 

operators and to the “Select One” upgrade package [210] offered by IAE to V2500 

operators during the first decade of the XXIst century.  

The second retrofit package, denoted PIP-Involved, is a larger scope 

improvement. It brings significant improvements to the turbofan engine by infusing state-

of-the-art technologies. However, technologies for this retrofit package are not yet mature 

and it is estimated that the package will be available in five to six years. This retrofit 

package requires more development time, is more expensive, but also provides 

significant maintenance cost reductions, fuel savings, and reduces carbon and nitrous 

oxides emissions. In some sense, this retrofit is similar to the “Tech Insertion” package 

[209] offered by CFMI to CFM56 operators or to the “Phoenix Standard” package [210] 

offered by IAE to V2500 operators. 

Performance Improvement Package “Light” description 

The PIP-Light retrofit is lower scope with a short time to market and a cheaper 

acquisition cost. The retrofit is made of several technologies that can be installed during a 

major maintenance event, such as a shop visit when the engine is removed from the wing. 

Its purpose is to improve the economics of the turbofan engine at a minimum capital 

expenditure for the airline. Improving the economics consists in reducing the direct 

operating cost by reducing fuel-burn, emissions, and maintenance costs. The focus of the 

modification is on the high pressure compressor and high pressure turbine. The high 

pressure compressor benefits from improved blade leading edges, improved surface 

coatings, and 3-D airfoil designs. This enables an increase in the exhaust gas temperature 
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margin. The high pressure turbine benefits from a new material, and from redistributed 

internal cooling which enables another modest increase of the exhaust gas temperature 

margin. In addition, an improved tip shelf and a stronger material to produce blades 

resistant to airfoil untwist and airfoil distortion enable a further reduction of the 

deterioration rate of the exhaust gas temperature margin over time. All in all, the 

performance improvements offered by the light package are summarized in Table 64. 

Table 64: PIP-light key metrics with respect to current baseline turbofan engine 

Initial/Restored EGT margin +5°c 

EGT margin degradation rate -5% 

Specific Fuel Consumption -0.8% 

PIP-Light price (2014-US$) 0.3M 

Performance Improvement Package “Involved” description 

The PIP-Involved retrofit is a significant improvement that increases substantially 

the value of the turbofan engine by infusing several cutting edge technologies to reduce 

fuel-burn, cut carbon emissions, and stretch the on-wing time so as to reduce 

maintenance expenditures. The retrofit can be installed during a major maintenance 

event, such as a shop visit during which the engine is removed from the wing. The focus 

of the modification is on several aspects: updates to the high pressure compressor, 

updates to the high pressure turbine, and updates to the low pressure turbine. The retrofit 

builds upon the technologies developed for the PIP-Light but goes further. It includes 

improved materials for the turbine in order to increase the exhaust gas temperature 

margin, an improved cooling scheme in order to further increase the exhaust gas 

temperature margin, but also improved blade leading edges, new 3-D airfoil designs, as 

well as a new multilayer erosion-resistant thermal barrier coating with improved rub-in 

capabilities.  
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In addition to these improvements, the PIP-Involved tries to address the loss of efficiency 

over time due to increasing blade tip clearances. Indeed, increasing clearance between the 

tip of blades and the shroud leads to a reduced stage efficiency and therefore to a the 

reduction in the exhaust gas temperature margin over time [211]. In order to mitigate the 

increase in blade tip clearance, an improved clearance control system is installed. A 

clearance control system consists of a valve adjusted in real-time by the engine Full 

Authority Digital Engine Control (FADEC) to control the mix of hot air from the 

compressor and cold air from the bypass duct. This airflow is subsequently circulated in 

tubes surrounding the casing of each turbine stage in order to control the casing 

temperature. By doing so, the air expands or contracts the turbine casing which helps 

control the clearances between the casing and the tip of blades.  This improved model-

based control software uses the engine operating information to estimate clearances and 

to improve the gas path sealing [212].  All of this leads to better overall performance and 

better performance retention over time. The performance improvements offered by the 

PIP-involved package are summarized in Table 65. 

Table 65: PIP-Involved key metrics with respect to current baseline turbofan engine 

Initial/Restored EGT margin +15°c 

EGT margin degradation rate -8% 

Specific Fuel Consumption -1.8% 

PIP-Involved price (2014-US$) 1.6M 

Competing Performance Improvement Package using PMA 

The original equipment manufacturer anticipates that a competing maintenance, 

repair, and overhaul provider will start offering a competing package available for retrofit 

starting in 2019. The competing package falls somewhere in between the PIP-Light and 

the PIP-Involved packages, although at a significant discount. 
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8.1.4 Competitive setting and technology development timeline 

The previous paragraph described the two performance improvement packages 

that may be developed by the engine manufacturer. Due to limited resources, these two 

development streams are exclusive of one another and decision-makers need to assess the 

merit of each alternative in order to select one development strategy.  Three potential 

moves have been identified by the engine manufacturer: do nothing and run the risk of 

losing market share on profitable servicing of the fleet of turbofan engines, develop the 

low-cost PIP-Light in order to try to preempt competition but still face the risk of having 

a competitor with a better product in the future, or finally, develop the more expensive 

PIP-Involved but face a longer development phase during which a significant opportunity 

cost will be experienced owing to reduced sales during development and reduced market 

size once the retrofit package reaches the market. A timeline representing the different 

scenarios and the different moves that the engine manufacturer and its competitor may 

make is proposed in Figure 80.  
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Figure 80: PIP development strategies in a competitive environment 

8.2 Aircraft and engine operating economics 

The performance improvement package is a set of technologies that aims at 

improving the operating economics of the aircraft. Ahead of the design, certification, and 

production, the manufacturer builds a business case by investigating the market reaction 

and by quantifying the benefits of retrofitting existing aircraft with the new technologies. 

Before delving further into the economic analysis of the package, a review of the 

operating economics of aircraft and turbofan engines is performed. It is a first step based 
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on the paper by Justin and Mavris [213] that helps understand what the technology 

package physically does to the engine, and how the physical changes map to economic 

improvements and increased airline profitability. Indeed, aircraft and engine economic 

evaluations are at the core of the proposed proof-of-concept study. Their goal is to help 

understand the behavior of airlines when faced with choices concerning the fleet renewal 

and fleet upgrading processes.  

To do so, this research temporarily takes the point of view of airlines and 

investigates how airlines assess the economic performance of aircraft and engines, and 

how they eventually choose between the offerings of various manufacturers. To 

differentiate between the different aircraft available, two overall evaluation criteria are 

chosen to summarize the economic performance of the aircraft. These are the total 

airplane-related operating cost (TAROC) and the total airplane-related operating 

revenues (TAROR). The airplane-related operating costs and revenues are metrics that 

focus only on those costs and revenues that are incurred because of the operation of the 

aircraft. Consequently, they are a direct translation in monetary units of the operating 

performance of the plane and its suitability for the airlines’ network.  

The TAROR metric reflects the ability of the aircraft to generate revenues and 

consists of the revenues generated by the cabin, the cargo-holds, as well as the ancillary 

fees such as baggage fees. The TAROC metric reflects the costs incurred by airlines 

when operating the aircraft and includes both the indirect and direct operating costs. 

These are made of the acquisition costs, the financing costs, the insurance costs, the spare 

acquisition costs, the maintenance costs, the labor costs, the fuel costs, and various fees, 

taxes and ground handling charges. The choice of these two metrics is motivated by their 



www.manaraa.com

347 

industry-wide acceptance [214]. Combined together and discounted properly over the 

entire operating life of the asset, they yield an estimate of the value of the aircraft. 

Indeed, in a similar application, Thokala et al. [215] indicate that the entire asset life-

cycle needs to be accounted for when trade-off studies are performed for design selection.  

In this study, an airframe and engine valuation methodology is developed and it allows 

analysts to quickly evaluate the intrinsic value of an aircraft – or fleet of aircraft – by 

estimating both the TAROR and TAROC experienced by airlines.  

The proposed aircraft and engine evaluation methodology called i-CARE for 

Integrated Cost And Revenue Estimation is articulated around four steps as highlighted in 

Figure 81. The first step is a network analysis that uses the schedule of flights of an 

airline to perform flight performance estimations. The second step is a TAROR 

evaluation based on the payload computations assessed during the first step. The third 

step is a TAROC evaluation that also uses the outputs from the network analysis. In the 

final step, results from the previous analyses are gathered to estimate present and 

expected future cash flows that are both aircraft and airline-specific. For the purpose of 

this thesis, more emphasis is put on the estimation of the TAROC since the performance 

improvement package will mostly impact costs. On the other hand, no significant changes 

are expected to the TAROR metric as the performance improvement package is assumed 

to have a negligible effect on the payload-carrying capability of the aircraft. 



www.manaraa.com

348 

 

Figure 81: Aircraft evaluation methodology 

8.2.1 Enabling the aircraft and engine economic evaluation 

Several software are available in the industry which enable economic analyses of 

aircraft and engine in addition to the myriad of in-house calculators developed by original 

equipment manufacturers, airlines, research agencies, and other third parties. Popular 

names includes the Jeppesen Airline Optimization Suite, the Pace Mission software, the 
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go into the level of details required to account for the aging process of the engine and the 

resulting impact on the aircraft operating economics. As a result, a new aircraft and 

engine evaluation tool is developed with significant emphasis put on engine degradation 

processes, on engine maintenance analysis, and on engine performance degradation over 

time. 
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8.2.2 Airline operations and network analysis 

The analysis is performed using a mission analysis software and the inputs for this 

analysis are shown in Figure 82. These inputs consist of an airline schedule, which is a 

list describing the departure and destination for each flight in the network, and of an 

aircraft performance file. Depending on the type of analysis performed, the airline’s 

schedule might be a single generic route repeated several times a day, a typical schedule 

with a realistic mix of generic short and long segments, or a true airline schedule. In the 

latter case, the airline schedule can be retrieved directly from the airline website or from 

the OAG1 database and is subsequently processed to extract a database of flights operated 

by the fleet of aircraft under review. 

Two types of investigations can be performed using real airline schedules: fleet 

replacement simulations and fleet upgrade simulations. The first type of investigation 

simulates the analysis performed by airlines studying a possible replacement of their fleet 

with newer and more efficient aircraft models. The second type of investigation simulates 

upgrades to aircraft in the fleet currently operating the network. Under both assumptions, 

the network is operated by a fleet of new or upgraded aircraft replacing on a one-to-one 

basis the existing fleet such that no net growth in the network occurs.  

                                                 

1 OAG: Official Airline Guide 
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Figure 82: Network Analysis 

The output of the analysis is a table showing the leg-distance, block time, block 

fuel, and payload for each and every flight. Optional outputs include the optimal flight 

level, average expected wind, and derate factor for each flight in the network. These 

outputs are used to complete the remaining steps of the analysis and to estimate standard 

airline statistics such as yearly aircraft utilization and flight hour to flight cycle (FH:FC) 

ratios. 

8.2.3 Revenue analysis 

The revenue analysis consists in computing the operating revenues for each flight 

and then summing these revenues for each week of the period studied. The revenues 

come primarily from two sources: the passengers in the cabin and the cargo in the holds. 

Following recent trends in the airline industry, ancillary fees can also be accounted for 

[216] [217]. To estimate the number of passengers and the amount of cargo carried on 

each flight, an algorithm is used to fill up the plane with payload. For each flight in the 

network, the algorithm checks whether there is sufficient payload-carrying capability 

available to fill the cabin and the cargo holds given assumed or historical passenger and 

cargo load factors. If there is enough room to accommodate both passenger and cargo 

loads, the aircraft will be filled up. If not, cargo is removed first and if this is still not 

AIRLINE OPERATIONS 

1 – WEEKLY FLEET-
WIDE SCHEDULE 

2 – AIRCRAFT 
CHARACTERISTICS 

3 – MISSION ANALYSIS 
SOFTWARE 

4 – AIRCRAFT & 
ENGINE OPERATING 

METRICS (BLOCK 
TIME, BLOCK FUEL, 

DERATE, PAYLAOD…) 



www.manaraa.com

351 

sufficient, passengers are also removed. This ensures that the whole carrying capability of 

an aircraft design is used when performing comparative studies. 

Once the passenger and cargo loads are set, revenue estimations are made using 

historical or forecasted yields for the airline under review. These estimations may be 

modulated on a monthly basis by a seasonal factor to account for cyclic variations in 

passenger and cargo demand. The revenues computed for each flight in the network are 

next aggregated to provide an estimate of the revenues generated by the operation of the 

aircraft. 

8.2.4 Cost analysis 

The cost analysis is carried out next by breaking down the costs into different 

areas, each representing one source of cost. These different areas are not totally 

independent and some relationships are defined in between them. For instance, turbofan 

engines deteriorate over time and fuel-burn is impacted by the aging status of the engine. 

These different costs are described in the following paragraphs with a greater emphasis 

on those dealing specifically with the aircraft and the engine where product 

differentiation may occur.  

Acquisition and Financing Cost Analysis 

There are many ways airlines can get access to aircraft. Some airlines may benefit 

from state-sponsored export credits while some others benefit from government credit 

guarantees. However, most of the financial schemes revolve around a handful of methods 

spanning from outright purchases of the asset to simpler operating leases. The most 

common acquisition methods are acquisition using cash, acquisition using debt, and 
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financial lease for which the asset is leased during a fraction of its operating life and then 

purchased by the operator. Another popular way of getting access to aircraft is through 

operating lease, although this is not an acquisition of the asset per se [218] [219]. 

Although the acquisition method does not really help with product differentiation, 

its peculiarities can affect the evaluation of other expenditures. For instance, operating 

lease contracts generally stipulate that the lessee must perform maintenance checks for 

both the aircraft and its engines before returning them to the lessor. Therefore, these 

additional checks must be accounted for during the evaluation of the maintenance costs. 

Inputs for this analysis range from the lease contract structure or the loan structure 

to the expected residual value of the aircraft at the end of the study to account for positive 

cash flows when operators resell or scrap the aircraft for parts [220]. 

Aircraft Maintenance Cost Analysis 

This analysis deals with the computation of the maintenance costs for both the 

airframe and some heavy components such as the auxiliary power unit (APU), the tires, 

the wheels, the brakes, the landing gear, and the thrust reversers. Both the airframe and 

the heavy components have their own specific maintenance programs and these usually 

consist of a list of parts for which inspection is due and a list of items for which 

replacement is due at specific calendar times, flight hours, or flight cycle intervals. These 

programs usually leave enough room for airlines to slightly adapt and optimize the 

schedule of maintenance for their own specific operations.  

The airframe maintenance programs prescribed by either OEMs or independent 

maintenance, repair, and overhaul facilities (MROs) and reported in Aircraft Commerce 

[221] are used alongside the aircraft utilization statistics to derive the most likely 
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calendar of line maintenance, base checks, and heavy structural checks. Using the work 

scope associated with each of these events, the airframe maintenance costs can be 

estimated. The maintenance burden for heavy components is estimated in a similar way 

by first deriving a calendar of likely maintenance events and then estimating the costs of 

each of these maintenance events.  

To simulate what is happening during the day-to-day operations of an airline, an 

airframe maintenance optimizer is implemented as depicted in Figure 83. Its purpose is to 

design a maintenance schedule which optimizes aircraft availability [222] by grouping 

maintenance events that are expected to be performed within a short time-period. 

 
Figure 83: Elements of airframe and heavy component maintenance 

The detailed algorithm used to forecast airframe and heavy components 

maintenance is given in Figure 84. 
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Figure 84: Forecasting airframe and heavy components maintenance events 

  

Engine Maintenance Cost Analysis 

The purpose of the engine maintenance analysis is twofold: first to estimate the 

expenses to keep the engine airworthy, and then to estimate the deterioration status of the 

engine (wear stemming from the operations and the surrounding environment) and the 

resulting effect on fuel-burn. Engine maintenance is usually divided into three main 

tasks: the first concerns the replacement of life-limited parts, the second concerns the 

Next
Structural 

check date

Next
C-check date

Maintenance Planning 
Document

Next Line 
Maintenance 

date

Next 
A-checks 

date

Next Heavy 
Component 

check
schedule

NoYes

Next A and C checks 
more than 

Y-days apart ? 

Next C and Structural 
checks more than  

Z-days apart ? 

NoYes

Group next 
A and C 

checks date

Group next 
C and 

Structural 
checks date

Insert next Heavy 
Component, Line, A, C and 

Structural checks in 
maintenance calendar

Increment time-Index to 
closest future maintenance 

event 

Next A and weekly 
checks more than

X-days apart ? 

NoYes

Group next 
A and weekly 

checks date

Time-Index greater than 
study-period horizon?

Optimized 
Airframe 

Maintenance 
Schedule

Fleet 
utilization

No Yes



www.manaraa.com

355 

monitoring and restoration of the exhaust gas temperature margin, and the third concerns 

unscheduled engine removals due to aging, faulty engine hardware, excessive oil 

consumption, excessive vibrations, or external factors such as foreign object induced 

damage. 

Life-limited parts (LLP) are parts of the engine for which failure cannot be 

contained. To ensure these parts do not fail during operations, they are completely 

removed from the engine and replaced with new ones at specific time intervals expressed 

in flight cycles. There are different sets of life-limited parts in an engine depending on the 

level of stress under which they operate: LLP for the fan, LLP for the low pressure 

compressor and turbine, and LLP for the high pressure compressor and turbine. 

Information regarding the cost and the certified lives of life-limited parts of typical 

narrowbody aircraft are published in Aircraft Commerce [222] [223] [224] [207] [208]. 

The exhaust gas temperature (EGT) is a temperature measured in the engine 

exhaust which indicates how efficient the engine is at producing its design thrust [225]. 

As the engine ages, it becomes less efficient, must burn more fuel, and thus runs hotter to 

provide the same amount of thrust as a new engine. There is however an upper limit – a 

physical limit – as to how hot an engine can operate since high temperatures will 

adversely affect the engine integrity. A new or recently overhauled engine can produce its 

rated thrust at an EGT well below a design reference, called the EGT red line, thus 

providing a large EGT margin. As the turbofan ages, the EGT margin decreases until the 

engine cannot produce its rated thrust without exceeding this reference red line. At this 

point, it becomes necessary to remove the engine and send it for a performance 

restoration overhaul which will restore some of the original EGT margin. The concepts of 
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EGT redline, initial EGT margin, and reduced EGT margin due to aging are described in 

Figure 85. The EGT margin erosion over time is a complex process and some research is 

carried out in the literature to model it. Using EGT margin erosion data-points for typical 

narrowbody aircraft reported by Aircraft Commerce [208] [227], Justin et al. [44] derive 

the EGT margin erosion power-law model displayed in Eq. 55: it represents the EGT 

margin lost as a function of the number of flight cycles. The expense incurred during 

these performance restoration shop visits includes the cost to replace and repair parts as 

well as the labor expense related to the removal, opening, and inspection of the engine. 

�É�úû}r = ) ∙ �7ü7ý�6qþ �� ) = 0.104 ;  M = 0.659 

Eq. 55 

Figure 85: Effect of engine wear on the EGT margin 

Besides these expensive shop visits, airlines perform cheaper engine-wash to 

remove some of the contamination that is deposited inside the engine over the course of 

normal operations. Indeed, modern turbofan engines are very efficient pieces of 

machinery, but this comes at the cost of increased sensitivity to disturbances. Over time, 

the accumulation of deposits (of anti-icing and de-icing fluids to name a few [228]) inside 

the engine leads to a performance deterioration which can be mitigated by regular engine 

wash. According to Ackert [226], engine washing is an on-wing and ground-based 
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process that pumps water and cleansing additives into the engine intake while the engine 

is operating. The process fully penetrates the compressor and turbine to clean the airfoil 

surfaces. By removing deposits, regular engine wash increases the compressor efficiency, 

which restores some of the EGT margin and results in longer on-wing times and reduced 

fuel-burn. Figure 86 highlights the slower erosion and slower fuel-burn degradation of a 

typical narrowbody turbofan having regular engine wash and periodic overhauls. 

 
Figure 86: Effect of regular engine wash (a) on the EGT margin erosion and (b) on the fuel-burn 

degradation as a function of flight cycles 

 

In addition to the shop visits, another source of maintenance expenses is related to 

unscheduled engine removals. According to Kleinhans as reported in Aircraft Commerce 

[229], unscheduled removals are split between engine and non-engine related events and 

encompass a wide variety of maintenance events stretching from aging issues, faulty 

engine hardware leading to high oil consumption and excess vibrations, to extensive 

repairs following the ingestion of foreign objects. 

Traditionally, this analysis is done using standard estimates for both the EGT 

margin erosion and the unscheduled maintenance models. This means that the effects of 

idiosyncratic operations are not accounted for in the reliability models. According to 

Henning quoted in The Engine Yearbook [230], the effects of flight operations need to be 
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accounted for using an operating severity factor which assesses the harshness of the 

operations and the resulting level of wear and tear on the engine above or below a 

standard. This engine-specific standard is defined as a triplet (flight hour to flight cycle 

ratio, engine derate, and outside air temperature) [231] which helps establish baselines for 

both the EGT margin erosion and the unscheduled maintenance models. Rupp [232] 

asserts that the severity modulates the maintenance cost by accounting for the engine 

derate used at take-off, climb, and cruise as well as for the flight length measured with 

the FH:FC ratio. Ackert [226] mentions that turbofans operated with larger derate factors 

use less thrust and therefore run cooler, which translates into lower deterioration rates and 

longer on-wing lives. Similarly, turbofans used for longer flights are spending 

proportionally less time at the take-off and climb power settings that are most demanding 

to the engine. This leads again to lower deterioration rates and longer on-wing lives as 

indicated in Figure 87.  

 

 
Figure 87: EGT margin erosion for engines 

operating with low severity (red) and high 

severity (black) factors 
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factor and an environmental factor. Both are estimated using standard tables and severity 

surfaces released either in the public domain [226] such as the one depicted in Figure 88, 

or in documentations provided by engine manufacturers. A methodology to compute the 

0

20

40

60

80

100

120

0 10 20 30

E
G

T
 M

a
rg

in
 (
°
C

)

Flight Cycle Number (1,000)

Low severity

High severity



www.manaraa.com

359 

severity factor is also proposed by Hanumanthan et al. [231]. The operational severity 

accounts for the harshness of the operations and uses the derate factor as well as the 

average length of flight (FH:FC) as inputs.  

 

 

Figure 88: Operational severity 

factor 

The environmental factor accounts for the atmospheric conditions and captures 

the additional wear and tear due to higher than standard outside air temperatures and 

more pronounced corrosive-erosive levels resulting from salty air and dust, sand, and 

gravel particles. A map representing the impact of the environment on the degradation of 

the engine is shown in Figure 89. The resulting composite severity is used next as an 

inverse multiplier for the characteristic life of Weibull distributions used to model the 

occurrence of unscheduled maintenance events [233] [234] and as a multiplier for the 

slope of the EGT erosion models.  
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Figure 89: Environment harshness and impact on severity (adapted from [235]) 

The EGT margin erosion and the unscheduled maintenance models are however 

not valid over the entire engine lifetime. Instead, engine manufacturers usually 

distinguish between the first life, defined as the time up to the first shop visit, and the 

mature life, defined as the time after this first shop visit. Therefore, different models are 

retained for these two periods. For instance, the initial EGT margin for a brand new 

engine is higher than the EGT margin for an overhauled engine fresh out of maintenance 

because shop visits cannot restore an engine to like-new conditions [236].  

Having defined the various causes of turbofan engine maintenance, the aim of 

engine operators is to schedule the maintenance events to maximize on-wing time, 

minimize maintenance costs, and minimize fuel-burn. A schedule optimizer is therefore 

used to maximize engine availability by grouping maintenance events while constraining 

the removal of life-limited parts that still have some operating potential. For this, the 

concept of life-limited part maximum stub-life is defined as the maximum number of 

cycles remaining for a life-limited part to be considered for replacement. Thus, at each 

maintenance event, the remaining potential of life-limited parts is compared to the 
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maximum stub-life to determine whether replacement is necessary. The stub-life concept 

is inimically linked to the concept of build standard which defines the expected on-wing 

time of the engine before its next shop visit and therefore the required EGT margin [235]. 

This helps define the workscope associated with each maintenance event so as to achieve 

a fine balance between less frequent maintenance events and more expensive 

maintenance. 

As a result, the schedule optimization first assesses the workscope associated with 

each maintenance event and then estimates the associated cost. If the shop visit results 

from the need to replace the fan LLP, the low pressure LLP, or from other unscheduled 

maintenance reasons, a performance restoration may be performed concurrently 

depending on the remaining EGT margin. However, if the core LLP must be replaced, 

then the engine needs to be taken apart and a performance restoration is always 

performed. By tracking the EGT margin of each engine over time, the optimizer selects 

whether a comprehensive but expensive overhaul is required or whether a cheaper 

limited-scope performance restoration is sufficient. This leads to the maintenance model 

depicted in Figure 90 which properly accounts for both the operating and environmental 

aspects. 
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Figure 90: Engine maintenance analysis 

 

The detailed algorithm used to estimate the engine maintenance schedule and 

engine maintenance expenditures is described in Figure 91. 

ENGINE MAINTENANCE ANALYSIS 

 

 

 

 

ENGINE MAINTENANCE 
COST 

 & AVAILABILITY &  
EGT MARGIN STATUS 

LIFE LIMITED PARTS 

FAN  
LLP 

LOW 
PRESSURE  

LLP 

HIGH 
PRESSURE 

LLP 

EGT MARGIN 

INITIAL 
EGT 

MARGIN 

EGT 
EROSION 
MODELS 

RESTORED 
EGT 

MARGIN 

UNSCHEDULED MAINTENANCE 

MONTE CARLO SIMULATIONS 
FOD, VIBRATION, OIL 

CONSUMPTION 

AIRLINE OPERATIONS 

FH:FC 
THRUST 
DERATE  

T/O, CLIMB 

EROSIVE 
LEVEL 

SEVERITY 

SCHEDULE OPTIMIZER 

ENGINE 
MAINTENANCE 

SCHEDULE 

ENGINE 
MAINTENANCE 

WORKSCOPE 

LABOR  
COSTS 

MATERIAL 
COSTS 

TURN-AROUND 
TIME 



www.manaraa.com

363 

 
Figure 91: Forecasting engine maintenance events 
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Figure 92: Spare part analysis 
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estimated by iteratively computing the probability that one engine, then two, then three, 

and so forth go to maintenance simultaneously. This probability is compared next to the 
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Mathematically, when the mature SVR and the TAT are expressed with respect to a 

common factor (one thousand flight-hours), this is equivalent to solving for the lowest 

number N_SPARE such that the inequality in Eq. 56 holds. Both the mature SVR and the 

TAT are outputs from the engine maintenance module with the mature SVR computed 

using statistics of simulated maintenance events after the first shop visit and the TAT 

estimated from the workscope associated with these events.  

; -=}�� ∙ r{r ∙ B��þ ∙ �4�E?'!·����	
?@A ≥ �)�
-�F(.1)�2ℎ4,)(*)M(*(�P Eq. 56 

The detailed algorithm used to perform the computation of the number of spare 

engines required to achieve a target dispatch availability is given in Figure 93. 
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Fuel Cost Analysis 

The fuel expenses incurred by the aircraft operations consist of the cost related to 

the purchase of fuel for the powerplants and auxiliary power unit. This estimation is done 

in three steps as summarized in Figure 94. 

The first step is the computation of the block fuel required to perform each and 

every flight in the network. This is done using a mission analysis software and this 

provides a first estimate of the amount of fuel needed. However, this does not account for 

the engine degradation status and the resulting impact on fuel-burn. 

In the second step, the engine status is taken into account to refine the initial fuel-

burn estimate. The engine degradation is tracked using the EGT margin erosion modeled 

in the engine maintenance analysis. Wiseman et al. [238] indicate that for large civil 

turbofans, a 1°C increase in EGT corresponds to as much as 0.1% increase in specific 

fuel consumption (SFC) in cruise. This estimation is corroborated by Yilmaz [239] for 

CFM56-7B turbofan engines mounted on typical narrowbody aircraft who estimate the 

mapping to be 0.81% increase in fuel flow for each 1°C increase in EGT at max 

continuous thrust and 0.87% increase in fuel flow for each 1°C increase in EGT at take-

off thrust. Using this relationship, an estimate of the extra fuel consumed by an aging 

turbofan engine can be computed. To extend this computation to all engines within the 

fleet, the EGT margin erosion status of each engine is tracked and the corresponding 

excess fuel-burn is assessed. The excess fuel-burn of each engine is averaged to yield the 

instantaneous fleet-wide excess fuel-burn. 

In the third step, the amount of jet-fuel required for the airline operations is 

converted into an expense by using a fuel price model. Because the price of jet-fuel is 
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volatile and hardly predictable over long periods of time, analysts can investigate 

different fuel price scenarios or use different stochastic models to represent the evolution 

of the spot price of jet-fuel over time. 

 

Figure 94: Fuel-burn analysis 
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scheme on the basis that it is the most cost-efficient and environmentally-effective option 

for controlling aviation industry emissions [241].   

Tradable emission permits are one way such taxation may be implemented as 

explained by Pearce and Pearce [242]. In its June-July 2010 issue, Aircraft Commerce 

[243] reports that airlines affected by the European Union’s Emission Trading Scheme 

(ETS) must start collecting fuel consumption data to prepare for the trading of emission 

allowances. Although the taxation of international flight emissions has recently been 

postponed, emission expenses are still relevant for flights within the European Economic 

Area, and may be useful for scenario investigations used in long-term fleet planning 

exercises. The emission analysis is designed to accommodate carbon dioxide and nitrous 

oxides taxation schemes. The fuel consumption estimated during the fuel-burn analysis is 

used to estimate the amounts of carbon dioxide and nitrous oxides released in the 

atmosphere. In turn, these emissions are used to estimate the number of allowances and 

taxes that airlines have to pay. For carbon allowances, airlines have to buy about 15% of 

their emissions through auctions of carbon emission allowances [244]. For other 

emissions, emission quantities as well as tax rates [245] are used. These allowances and 

tax rates need to be adjusted for flights in different geographical areas, where allowances 

and taxation may be different or even non-existent. The emission analysis model is 

illustrated in Figure 95. 
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Figure 95: Emission taxation analysis 
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Tax, Fee, and Charge Analysis 

The tax, fee, and charge analysis is quite complex because of the diversity of tax 

schemes and fees used worldwide. The charges captured in this analysis include the 

navigation fees, the landing fees, and the handling charges such as gate fees, parking fees, 

lighting fees as well as the noise tax for environmentally-sensitive airports. For each 

flight in the network of the airline under review, the various charges collected by airports 

and air traffic control service providers are computed using the aircraft physical 

characteristics such as maximum take-off weight, approach and take-off noise levels, the 

network schedule (parking time, turn-around-time) as well as a customized database of 

airport and enroute charges built on published information (EUROCONTROL [249], 

IATA airport database [250]). 

Insurance Cost Analysis 

The insurance analysis deals with the computation of the expenses incurred to 

insure the aircraft hull. As a result, the inputs for this analysis are the fleet composition at 

any given point in time, as well as the market values for each aircraft in the fleet. If not 

publicly available, the market-driven aircraft values can be computed using the same 

residual value regressions employed during the estimation of the ownership costs (and 

resale price) using data from Kelly [251]. Next, typical hull insurance premiums for the 

airline industry [252] are used to assess the monthly insurance premiums. 
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8.2.5 Calibration of the engine maintenance modules in i-CARE 

Calibration of life-limited part replacement 

Replacement of life-limited parts is one of the main causes of maintenance for 

turbofan engines. The literature is reviewed to determine the different sets of life-limited 

parts as well as their certified lives. Typical short- to medium-haul narrowbody aircraft 

have three sets of life-limited parts [208]: one set for the fan and booster module, one set 

for the high pressure compressor and turbine, and one set for the low pressure turbine. 

The corresponding lives expressed in flight cycles are given in Table 66. 

Table 66: Life-limited part lives and costs for typical narrowbody aircraft (Aircraft Commerce [208]) 

 
Lives  

(Flight Cycles) 
Replacement Costs 

 (2014-US$) 
FAN LLP: 
Fan disk 
Booster spool 
Fan Shaft 

30,000 495,000 

LPC & LPT LLP: 
Stage 1 disk 
Stage 2 disk 
Stage 3 disk 
Stage 4 disk 
Shaft 
Conical support 

25,000 610,000 

Core LLP: 
Forward shaft 
Stage 1-2 spool 
Stage 3 disk 
Stage 4-9 spool 
Compressor CDP seal 
Front shaft 
Rear air seal 
High pressure turbine disk 
Rear shaft 

20,000 1,050,000 

Calibration of EGT margin erosion process 

One task for the construction of the engine maintenance cost model is to estimate 

the exhaust gas temperature margin erosion over time to determine the point in time 

where no EGT margin is left and the engine must be removed for an overhaul. Once 
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again, the specialized literature is used in order to retrieve EGT margin erosion data to fit 

a model. Unfortunately, rich and consistent sets of data are not plentiful in the public 

domain. Two sets of data have nevertheless been reported in Aircraft Commerce: Singer 

[253] reports EGT degradation rates for several narrowbody aircraft turbofans with lower 

thrust (23,000 lbs) and mean flight times of 1.2 hours, while Jesus [208] reports EGT 

degradation rates for mean flight times of 1.8 hours for lower thrust engines (23,000 lbs), 

and Karhumaki [208] reports EGT degradation for higher thrust engines (32,000 lbs). 

Two power law regressions are performed and yield the graphs of Figure 96 where the 

left exhibit is for shorter flights with lower thrust engines, while the right exhibit is for 

longer flights with higher thrust engines. 

  
Figure 96: EGT margin erosion is dependent on the thrust rating and severity of operations 

 

Besides the EGT margin erosion curves, it is also of interest to estimate the 

probabilistic distribution which yields the time distribution between performance 

restoration overhauls. Several probabilistic models could be used but Weibull 

distributions are popular to model the aging process of pieces of machinery, and have 

been used to model the aging process of turbofans. According to Nowlan and Heap [254], 

“Weibull distributions are candidates for representing items that have moderately high 

probability of failures at low ages and demonstrate monotonically increasing failure 
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probabilities thereafter.”  Following Hanumanthan [231], a Weibull distribution is 

calibrated to match the EGT margin erosion curve. First, the expected time to erode the 

initial EGT margin, denoted �É�_�4þÉ&6�ô, is estimated using the erosion regression. 

This expected time, named mean time between removal and denoted MTBR, is expressed 

in flight cycles to be consistent with the rest of the engine maintenance program which 

uses mostly flight cycle units. When the outside air temperature is close to or hotter than 

the engine corner point, some operators want to have some extra EGT margin padding to 

ensure that the full thrust can be used without exceeding the red-line. Therefore, the 

entire EGT margin is seldom used and a minimum EGT margin, 

denoted �É�_�4þÉ&6��·, is retained during operations. This means that 

only �É�_�4þÉ&6�ô −   �É�_�4þÉ&6��· will be consumed during operations before a 

performance restoration overhaul is performed. Finally, if the engine is in its mature life, 

which means that an overhaul has already been performed, only a fraction of the original 

EGT margin has been restored. This fraction is denoted � and the restored margin is 

defined by � ∙ �É�_�4þÉ&6�ô .  Using the power law previously regressed, this leads to 

the definition of the MTBF expressed in Eq. 57.  � ∙ �É�_�4þÉ&6�ô −  �É�_�4þÉ&6��· = ) ∗ ��qþ� Eq. 57 

With the estimate of the MTBR, the shape parameter denoted � as well as the 

scale parameter denoted   of the Weibull distribution are estimated next. Following 

Hanumanthan [231], Nowlan [255], Yu et al. [256], and Pascovici et al. [257], the shape 

parameter of the Weibull distribution is set to 5. The scale parameter is then used to 

match the probability distribution expected value, which is the expected failure time or 

mean time between failures, according to the formula in Eq. 58. 
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 = ��qþΓ �1 + 1��  
Eq. 58 

This leads to the parameterization and set of graphs displayed in Figure 97. These 

represent the probabilistic failure times (not a failure per se but rather the number of 

cycles accumulated when no EGT margin remains) for a lower thrust engine and a higher 

thrust engine for both the initial engine life and the mature engine life. As could be 

expected, the failure times happen sooner for higher thrust engines because they have less 

EGT margin to start with. They also occur much sooner during mature lives because the 

previous shop visit restored only about 75% of the EGT margin of a mint engine.  

 

Figure 97: EGT margin erosion using Weibull probability distributions for the first and mature lives 

of low thrust engines (exhibits (a) and (b)) and high thrust engines (exhibits (c) and (d)) 
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Calibration of aging process 

Besides the erosion of the exhaust gas temperature margin, wear and tear on the 

engine affect other components which may result in different failure modes. Modeling 

the failures of each and every component in the engine, from regulators to pumps, is 

beyond the scope of this research. A new generic failure mode, denoted aging, is 

introduced. Some of these failures may be engine-related such as oil leaks, bearing 

failures and faulty hardware, while some others are non-engine related such as foreign 

object damage and bird-strikes. In Aircraft Commerce [229], Kleinhans indicates that 

“non-engine related events […] occur at a rate of about 0.005 per 1,000 engine flight 

hour while engine-related events occur at a rate of 0.028 per 1,000 engine flight hour”. 

In another article, Aircraft Commerce [209] reports that “all unscheduled removals occur 

at an average of once every 30,000 engine flight hour” which is equivalent to a rate of 

0.033 per 1,000 engine flight hours. Following Hanumanthan [231], “the ageing curve as 

per the Maintenance Repair and Overhaul practice is a Weibull curve with a slope of 1.5, 

spreading to the entire life in service”. This is further corroborated by Pascovici et al. 

[257] who indicate that the shape parameter of Weibull distributions representing the 

aging process of a turbofan engine is 1.5. With Eq. 58, the scale parameter is determined 

using the shape parameter by matching the expected time between failures to the 

estimates reported in the literature. This leads to the parameterization and the graph 

displayed in Figure 98.  
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Figure 98: Aging process requiring 

unscheduled engine removals using Weibull 

probability distribution 

Calibration of engine removal costs 

Lastly, the engine removal costs are estimated. Removal costs vary widely 

depending on the workscope to be performed and whether the engine needs to be opened 

(i.e. if major mating engine flanges must be separated). The turbofan engine Workscope 

Planning Guide usually suggests the amount of work to be performed [226] and three 

levels of workscope are suggested for engine shop visits: minimum level, performance 

level, and full overhaul level. Accordingly, engine removal costs are given in Table 67. 

Table 67: Engine removal workscope and costs 

 Shop Visit 

 
Minimum Level Performance Level Full Overhaul Level 

Unscheduled 

Removal 

Description 

Limited time since last 

overhaul. Mostly 

external inspection and 

minor repairs. 

Airfoils, vanes, seals, 

and shrouds are 

inspected. 

EGT margin needs 

partial restoration to 

meet min-build. 

Degraded hardware 

condition forces full 

disassembly of engine. 

EGT margin is low 

and restoration 

required to meet min-

build. 

Non EGT margin 

related engine 

removals. 

Criteria in 

Engine 

Maintenance 

Analysis 

Fan LLP 

LPC LLP 

LPT LLP 

EGT Weibull 

Sampling 

EGT Weibull 

Sampling 

Aging Weibull 

Sampling 

Threshold 

LLP lives up �É�_�4þÉ&6≥ 0.5 �É�_�4þÉ&6�ô 

�É�_�4þÉ&6≤ 0.5 �É�_�4þÉ&6�ô 

�É�_�4þÉ&6≤ 0.5 �É�_�4þÉ&6�ô 
Whenever event 

occurs 

Cost US$ 300,000 US$ 1,150,000 US$ 1,400,000 US$ 1,600,000 
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8.2.6 Verification and validation of aircraft and engine analysis method 

Implementation verification 

Having reviewed the various implementation choices and the different algorithms 

used, the aircraft and engine evaluation methodology is now verified. Contrary to other 

parts of this research, the methodology verification is not in the Experimental Plan 

chapter of this dissertation because it is not part of the proposed methodology to analyze 

program developments facing market and competitive uncertainties, and therefore it does 

not contribute to the verification or validation of hypotheses set forth in this research. 

Nonetheless, validation of the proposed methodology requires a proof-of-concept 

application to a relevant industry problem, which in this case relies on a proper economic 

assessment of aircraft and engine combinations. Therefore, a full-fledged verification of 

the aircraft and engine evaluation methodology is necessary. 

A test case is used for verification purposes. It is designed to verify the 

correctness of the approach undertaken and to check for abnormal patterns in the results 

by comparing those with existing published analyses. The case is set-up with a single 

narrowbody medium-range aircraft operating on a network with an average flight length 

of 1.5 hour. This setup is very similar to a set of analyses published in 2006 by Aircraft 

Commerce [221] [258] [259] [260] [261]. This published study used a short to medium 

range narrowbody A319 aircraft manufactured by Airbus and the study was carried out 

using specialized software as well as field data collected from airlines and maintenance 

facilities worldwide. Table 68 summarizes the input parameters for these two analyses. 

Both analyses are very similar which enables a direct comparison of their outcomes.  
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Table 68: Inputs for the verification test case 

Results from this verification test case are summarized in Table 69. It appears that 

the results from the proposed methodology closely match both the direct and indirect 

operating costs reported in the specialized literature. The main sources of difference are 

OPERATING METRIC INPUTS 

125 Passengers – Medium Range – Narrowbody Aircraft 

 Aircraft Commerce i-CARE 

Aircraft 

Aircraft Type A319 125-pax Narrowbody 

Engine Type CFM56-5B6 23K Thrust 

Acquisition Method Operating Lease Operating Lease 

Network Operations 

Business Environment Europe Europe 

Airline Type Domestic Carrier Domestic Carrier 

Network Type Generic Route 35 routes 

Aircraft Utilization   

Yearly Block Time (BH)  3,186 

Yearly Flight Hours (FH) 2,800 2,765 

Yearly Flight Cycles (FC) 1,830 1,826 

FH:FC 1.51 1.51 

Average Mission Length ESAD (nm) 627 604 

Average Take-Off Derate (%)  14 

Environment  Hot and Dry 

Severity Factor  1.18 

Analysis Input Parameters 

Aircraft Lease Rent (% Value) 6% per year 6% per year 

Maintenance Program MPD28 Similar to MPD28 

Target Engine Dispatch Availability (%)  97.5 

Shop Visit at End of Lease  Yes 

Typical Life-Limited Parts Stub-Life (%)  8 

Maintenance Minimum Build (FC)  5,000 

Fuel Price (2014US$/Gal) 2.00 2.00 

Insurance Premiums (% Value)  1.5 

Study Length (Years) 25 25 
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related to the fuel costs, the airframe maintenance costs, and the taxes, and may be 

explained as follows: 

• One reason to explain the 5.6% difference in the projected fuel costs is the fact 

that the proposed analysis takes into account the fuel-burn degradation over time 

while it is not clear whether the Aircraft Commerce analysis models this. If the 

analysis is run without the fuel degradation model, the fuel cost per flight cycle 

decreases to US$ 2,363 which is much closer to the Aircraft Commerce estimate 

(-0.8% difference).  

• The remaining difference can be attributed to the choice of alternate airports for 

diversion purposes. The choice of an alternate airport and the additional distance 

to fly there may affect the block fuel estimate as it takes fuel in order to carry fuel 

to fly to the alternate airport. While the distance to the alternate airport is not 

stipulated in the Aircraft Commerce analysis, it is an average of 419 nm in the 

proposed analysis.  

• For the taxes, fees, and user charges difference, one explanation may be the 

sensitivity of those to the type of operations investigated. The Aircraft Commerce 

number is an average estimate for European operations whereas the proposed 

analysis uses real charges for a small “equivalent” network in Southern Europe 

where airport taxes are lower than the European average. 

Finally, the two analyses differ by 0.8% for the overall TAROC figure. When the 

fuel-burn degradation over time is not accounted for, the two analyses are only 0.2% 

apart.  
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Table 69: Comparison of results for verification test case 

AIRLINE COST PER FLIGHT CYCLE – 2014 US$ 

125 Passengers – Medium Range – Narrowbody Aircraft 

 Aircraft Commerce i-CARE % Difference 
Fuel Costs [258] 

(Fuel Costs No Deterioration [258]) 
2,334 

2,465 

(2,363) 

5.6%  

(1.2%) 

Flight and Cabin Crew Costs [262] 1,753 1,740 -0.8% 

Airframe Maintenance Costs [221] 1,114 1,103 -1.0% 

Engine Maintenance Costs [221] 584 580 -0.8% 

Total Maintenance Costs 1,699 1,683 -0.9% 

Spare Costs  96  

Aircraft Leasing Costs [259] 1,614 1,566 -3.0% 

Total Operating Costs 

(No deterioration) 
7,400 

7,550 

(7,456) 

2.0% 

(0.8%) 

Emission Costs [263] 47 45 -4.1% 

Taxes, Fees, and User Charges [248] 1,246 1,171 -6.0% 

Insurance Costs [262] 141 143 1.4% 

TAROC 

(TAROC No deterioration) 
8,835 

8,909 

(8,815) 

0.8%  

(-0.2%) 

Since most of the inputs used to construct the aircraft and engine evaluation 

methodology are sourced from data published by Aircraft Commerce regarding a specific 

mission of one and a half hour, the comparison in Table 69 provides a means to check the 

consistency between the outputs of the analyses from Aircraft Commerce and the outputs 

from the i-CARE implementation. In other words, what is being checked in this section is 

the proper functioning of the methodology implementation and this constitutes the 

verification step. Given the excellent correlation between the outputs of these two 

analyses, the verification process turns out to be successful. 

Implementation validation: fuel-burn and maintenance costs 

In the previous section, the verification of the i-CARE implementation is 

performed by checking the outputs of the analysis on a specific mission using inputs 
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corresponding to this mission. Yet, many different types of missions may be investigated 

over the course of this dissertation in order to capture the whole spectrum of aircraft 

operators and owners. As a consequence, a wide variety of missions are analyzed next 

and compared with corresponding results published in the literature. The main difference 

with the preceding exercise is that the published data serving as reference in these new 

analyses was not used during the implementation of the aircraft and engine evaluation 

tool. In some sense, the entire domain of application of the proposed methodology is now 

checked with off-design analyses. 

Since the proof-of-concept application requires mainly fuel-burn estimates and 

maintenance cost estimates, special emphasis is put on the validation of the maintenance 

cost and the fuel-burn estimations. Several missions ranging from one hour to slightly 

over two and a half hour are analyzed using i-CARE and compared with new analyses 

published by Aircraft Commerce [223] [208] [236]. The results are displayed in Figure 99 

where the maintenance costs are expressed per flight cycle (in black) and per flight hour 

(in blue) for the different missions.  

 

Figure 99: Comparison of 

published (+) and computed 

(◊) maintenance costs per 

flight cycle and per flight hour 

for different missions 
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Results from the published literature are depicted using (+) signs while outputs 

from the i-CARE calculator are depicted with rhombus signs. The graph shows excellent 

correlations between these results and the validation is successful. 

For the fuel-burn estimates, the different missions are defined with the Equivalent 

Still Air Distance (ESAD) metric since wind assumptions may otherwise introduce noise 

in the data. Validation is performed for missions ranging from an ESAD of 373 nm to an 

ESAD of 1266 nm as shown in Figure 100. Results are provided for the model with fuel-

burn degradation depicted using blue rhombus signs as well as without the fuel-burn 

degradation depicted using red rhombus signs. Again, computed results match very well 

the published results by Aircraft Commerce [258] [264] [265]  and the validation is 

successful.  

 

Figure 100: Comparison 

between flight fuel-burn 

published (+) and computed 

(◊) for different missions 

Implementation validation: airline subfleet network analysis 

The aircraft and engine evaluation methodology is tested next on a bigger scale 

using the narrowbody sub-fleet of an airline operating in Southern Europe. The fleet 
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for twenty six years from a base in Malta. The aircraft are assumed to be financed using 

debt. The airframe maintenance program used is derived from the Lufthansa Technik’s 

progressive maintenance program for Airbus narrowbody aircraft as described in Aircraft 

Commerce [221]. 

Table 70 describes the assumptions related to the airline and highlights some 

relevant airline statistics. For this analysis, the environment is assumed to be erosive due 

to the proximity of the Mediterranean Sea and the likelihood of sand and dust in the air. 

The mean derate for the different flights in the network is set to 10%. The average 

outside air temperature at the Malta airport is assumed to be 24°C or 75°F. According to 

Hanumanthan [231] and Ackert [226], these network statistics yield an operational 

severity of 0.9 and an average composite severity of 1.12 when compared to the reference 

short-haul mission of unit severity (reference  mission defined as 1.4 hour flight with 

10% derate, and 18°C outside air temperature). 

Table 70: Network description and operating statistics 

OPERATING METRIC INPUTS 

140 Passengers – Medium Range – Narrowbody Aircraft 

Network Description Airline Statistics 

Yearly Aircraft Block Hours 3,790 Fleet Size 5 

Yearly Aircraft Flight Hours 3,379 Average Load Factor 76.1% 

Yearly Aircraft Flight Cycles 1,764 Average Yield ($/pax/nm) 0.129 

Flight Hours to Flight Cycles 1.92 Cargo Load Factor 45% 

Average Flight Length (nm) 780 Average Derate 10% 

Operating Environment Erosive Composite  Severity 1.33 

 

The chart in Figure 101 describes the repartition of costs over 25 years of 

operations. As may be expected, fuel expenditures and labor expenditures constitute the 
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main sources of costs with asset depreciation and airframe and engine maintenance 

following next. The computation is sensitive to the price of jet-fuel and its evolution over 

time. For this analysis, the price of jet-fuel is set to US$1.50 per gallon (the 2014 US$ 

equivalent of the price of jet-fuel when the first aircraft was delivered to the airline in 

2004). This price is then escalated by 3% every year. This repartition of expenditures is 

in-line with typical results from the industry. 

  
Figure 101: Fleet-wide operating cost breakdown Figure 102: Life-cycle cash inflows and outflows 

Next is Figure 102 which shows the monthly discounted cash flows over time as 

dark red bars and the cumulative cash flows as the light-colored surface. Peaks of cash 

outflows are initially related to the deposits made during aircraft deliveries, while later 

on, they are tied to maintenance events: these events are either related to the engines (full 

overhaul with low pressure and core LLP change around year 2015 and fan LLP change 

around year 2021) and to the airframe (C-4 check starting around year 2010, C-8 check 

starting around year 2016). The periodicity of cash flows exhibited in Figure 102 is 

caused by the seasonal nature of yields and load factors. 
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The chart in Figure 103 exhibits the evolution of the fleet-average EGT margin 

and the resulting fleet-average fuel-burn degradation over time. Indeed, the specific fuel 

consumption increases as the engine ages until a maintenance overhaul restores some of 

its original performance. This is primarily due to increasing blade tip clearances, airfoil 

erosion, and contamination [212]. The subtle jaggies along the fuel consumption 

degradation curve are due to the fuel-burn improvements following regular engine-wash. 

These jaggies are however smoothed-out a bit due to the fleet-wide averaging effect. 

 

Figure 103: Fleet-wide EGT 

margin degradation (red, 

decreasing) and SFC 

degradation (blue, increasing) 

Another figure of interest to assess the plausibility of the engine evaluation 
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the shop visit rate is usually computed for the first life and for the mature lives. First, an 
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rate (straight red line). The first life engine shop visit rate is 0.018 per 1,000 engine flight 

hours or EFH (value of the running SVR right before the first jump), while the mature 

life engine shop visit rate is 0.052 per EFH. Both compare well with numbers published 

by Ackert [226] and the International Aviation Service Group [266] for similar engines. 

 

Figure 104: Engine Shop Visit 

Rates and engine dispatch 

availability with two spare 

engines 

 

In addition to the shop visit rates, Figure 104 provides information regarding the 
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is small (five aircraft, ten mounted engines, and two spare engines) and the number of 

spare engines must be a whole number! 

8.3 Developing a market behavior model for the PIP adoption 

This section deals with the development of a market model to estimate the 

adoption of the performance improvement package by engine operators worldwide. The 

purpose of the market model is several-fold: the first objective is to divide the market into 

homogeneous market segments while trying to capture the wide variety of operators 

worldwide; the second objective is to quantify the operating benefits of retrofitting an 

engine with performance improvement packages taking the point of view of the engine 

operator; the final objective is to estimate how likely operators are to purchase the retrofit 

for subsequent installation on their fleet of turbofan engines.  

8.3.1 Market segmentation 

The first step is the market segmentation whose purpose is to create different 

customer profiles representing various types of airlines, each with its own set of 

requirements, preferences, and operations. Thus, a market segment is a homogeneous 

entity which represents one specific type of customer. This market segmentation paves 

the way for the estimation of the economic utility of the technology retrofit for each 

customer profile. As highlighted in Figure 105, there is nonetheless a wide variety of 

customer profiles since the airline industry encompasses operators as diverse as ultra-

low-cost airlines, low cost airlines, domestic airlines, legacy airlines, and premium 

international airlines. For the purpose of the proof-of-concept application, it is assumed 

that this diversity of customers can be captured using two metrics: the average flight 
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length and the ease of access to capital. Indeed, amongst the myriad of parameters that 

can be used to describe airline operations, the average length of flight and the aircraft 

utilization are the two metrics that impact most the total aircraft-related operating costs, 

which is how the effect of technology infusions will be measured. Consequently, several 

market segments are constructed using representative airline networks with given flight-

hour to flight-cycle ratios and corresponding yearly aircraft utilizations.  

  
Figure 105: Similar aircraft, widely different flight operations 

Besides, each of these market segments is further split into two sub-segments: one 

sub-segment represents airlines in good financial standing with ease of access to capital, 

while the other sub-segment represents airlines in financial hardship with limited access 

to capital. The degree of access to capital does not impact directly the aircraft and engine 

economics. Instead, it impacts the economic analysis of investments and capital 

expenditure decision such as the purchase of performance improvement packages. All in 

all, a representative airline network and an airline discount rate are used to define a 

particular market segment, the size of which is commensurate with the size of the 
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Using the Bureau of Transportation Statistics (BTS) data [269] publicly available, 

the distribution of flight length operated by short- to medium-haul narrowbody aircraft is 

generated and used to split the whole market into eleven different market segments. The 

yearly utilization corresponding to each of these segments is estimated by regressing data 

published by Boeing [270]. These are depicted in Figure 106. 

Figure 106: Typical narrowbody utilization (a) and yearly utilization (source Boeing [270]) (b) 

For the segmentation based on the ease of access to capital, a Weighted Average 

Cost of Capital (WACC) corresponding to established and financially sound airlines is 

used in conjunction with another weighted average cost of capital corresponding to 

financially strained airlines. The values are provided in Table 71 following a quick 

survey of the financial reports of a dozen airlines. 

Table 71: Selection of the WACC for market segmentation 

Easy access to capital Limited access to capital 

Air France  
Delta Airlines  

Hawaiian Airlines 
Jetblue 

Lufthansa 
Ryanair 

Southwest 
Average 

7.1% 
8.9% 
6.5% 
6.8% 
6.2% 
6.1% 
8.7% 
7.2% 

Avianca 
Alitalia 

China Eastern  
Iberia 

Jazeera Airlines 
LATAM 

Thai Airways 
Average 

10.5% 
9.2% 

10.8% 
12.2% 
12.5% 
9.2% 
9.1% 

10.5% 
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8.3.2 Simplified market behavior model 

The second step is the modeling of the market behavior which aims at trying to 

forecast the market preference or the probability of purchase by each operator within the 

eleven different market segments. This is a very complex task that is well beyond the 

scope of the dissertation since publicly available data to calibrate these models is not 

available. Some methods to perform this prediction include utility-based methods such as 

the choice models proposed by Luce [271], Lesourne [272], and McFadden [273] [274], 

as well as the popular conjoint analysis [275].  

Owing to the inability to get relevant data to calibrate these models, a simplified 

approach is undertaken which relies on the estimation of the economic surplus generated 

by the infusion of the technology retrofit. Indeed, the net present value of the gains 

obtained from operating the retrofitted engines (using the discount factor representing the 

type of market segment under review) is compared to the initial capital expenditure to 

yield the dollar surplus of the investment for operators. A logit model is used next to 

assess the customer purchasing intentions of the retrofit. Two alternatives are offered to 

the customer: either purchase the retrofit if it makes sense economically or keep 

operating the engine as it is. In the case of purchase or no purchase decision by the 

operator, the attribute retained is the difference in net present value between the two 

alternatives normalized by the purchasing price of the retrofit. The logit model is only 

“heuristically calibrated” for lack of other means. On the one hand, if the net present 

value of the retrofit is negative for the operator, there is little chance that the retrofit will 

be sold (unless the operator views the extra efficiency brought by the retrofit as a hedge 

against future uncertain energy prices). As a result, the β value must be large enough to 
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have small purchasing probability in these cases. On the other hand, if the net present 

value of the retrofit is positive, a significant number of operators will purchase the 

retrofit. For instance, John Leahy of Airbus mentioned that the “Airbus A320 New Engine 

Option will sell at a premium of US$7-8 million , or one half the net present value of the 

15% fuel savings the aircraft would deliver over today’s generation of Airbus A320 and 

Boeing 737s” [276]. This is particularly relevant for the current proof-of-concept study as 

the application is very similar. Given the commercial success of the A320 New Engine 

Option (most of the new orders for Airbus narrowbody aircraft have been for this new 

engine option, estimated to be 90% over the period 2010-2012) and a price tag of about 

US$55 million for a new A320 aircraft, this indicates that a difference in net present 

value of US$8 million normalized by the price of a new A320 aircraft brings a 90% 

choice probability. This translates into a β value of 15 as shown in Figure 107 and Eq. 59. 

 

:B4*�YE = 11 + exp s−�(�Y − �R)t Eq. 59 

Figure 107: Probability of choice between two alternatives with attributes z1 and z2 
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used as a first estimate of the entire market. It is also assumed that about half of this 

market is powered by turbofan engines that can be retrofitted with the performance 

improvement package.  

The performance improvement package is offered as a retrofit of technologies to 

be infused into turbofan engines that are currently in operations. It is not offered for 

newly built engines that are more efficient because they already benefit from a different 

set of non-retrofittable technologies. In addition, the economic life of aircraft and engines 

is not infinite: as time goes by, aircraft reach the end of the structural life for which they 

have been certified and new competitive offerings become available to the market. For 

these reasons, airlines usually retire or sell their aircraft after operating them between 

twenty and thirty years. Retirement usually occurs right before heavy maintenance when 

significant investment is due to keep operating the aircraft. This often makes continued 

operations either not economically sustainable or not competitive. Owing to the finite life 

of aircraft and engines, the target market size for the performance improvement package 

is expected to decrease over time. 

In order to quantify this value leakage, the retrofit manufacturer may use the 

survival curves of aircraft. Survival curves indicate how many aircraft of a given age are 

still in operation somewhere in the world. To derive the survival curve for the Airbus 

A320 family, the entire production list of A318, A319, A320 and A321 aircraft is first 

collected. The publicly available database published by Airlinerlist1 contains detailed 

information about each and every tail number and indicates whether the aircraft is in 

operation, stored, or withdrawn from use. Using this information, the fraction of aircraft 

                                                 

1 Available at www.planelist.net and retrieved in August 2015 
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still in operations in a given age cross-section is estimated. Repeating this exercise for 

every possible age cross-section yields the survival curve. The survival curve for the 

Airbus A320 family of aircraft is given in Figure 108. Since the survival curve is quite 

noisy, it is smoothed using a custom implementation of a non-parametric local regression 

algorithm (locally weighted scatterplot smoothing or LOWESS [277]).  

Figure 108: Yearly deliveries in (a) and survival curve in (b) for the Airbus A320 family of aircraft 

The A320 family of aircraft being rather recent and to make sure that “boundary 

effects” due to the newness of the jets do not truncate the survival curves, another set of 

deliveries and current operating status is analyzed for the Boeing 737 Classic family of 

aircraft (737-200, 737-300, 737-400, 737-500) and for the McDonnell Douglas MD80 

family of aircraft (MD80, MD81, MD82, MD83, MD87, MD88). The end-result is 

showcased in Figure 109 and exhibits somewhat similar patterns. 
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Figure 109: Yearly deliveries in (a) and survival curves in (b) for the 737 Classic family and MD80 

family 

Using the survival curves for the three fleets of narrowbody aircraft, information 

can be obtained regarding the market for the performance improvement package retrofit. 

Indeed, it seems that the target market is decreasing at a rate of 8% per year after the first 

fifteen years of operations as highlighted in Figure 110. Indeed, during these initial 
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Consequently, few if any retrofits will be installed during the first twelve years of 

operations (on average) and the first retrofit installations will roughly coincide with the 

age cross-section that starts to experience retirement at an average rate of 8% per year. 

 

 
Figure 110: Calibration of the 

target market size shrink over 

time 
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8.4.1 Down-selecting uncertainties 

The price of jet-fuel has traditionally been one significant source of risk for 

airlines for two reasons: first, airlines are particularly exposed to the price of jet-fuel as 

twenty to forty percent of the total aircraft-related operating costs are related to fuel 

expenditures; second, the high volatility of jet-fuel price compounds this exposure and 

has historically proven to be a problem for airlines. As a result, airlines have shown a lot 

of creativity in order to limit their exposure to the fluctuations of jet-fuel price over time. 

For instance, some airlines have undersigned derivative contracts to mitigate the impact 

of unknown future fuel price by locking it ahead of time in exchange of the payment of a 

premium, while a major American airline purchased an oil-refinery to “hedge” some of 

its fuel expenditures [278]. Still, the most efficient hedge against the volatility of jet-fuel 

price is probably the use of more efficient aircraft and engines, which is why airlines are 

constantly pushing aircraft and engine manufacturers to design more efficient aircraft and 

engines [279]. As a result, the price of jet-fuel is a major driver impacting many 

aerospace developments and is retained for the analysis. 

Airlines in Europe are facing a new form of taxation based on their carbon 

emissions. Given the novelty of this new form of taxation and the uncertainty regarding 

the price of future carbon emissions allowances as well as the uncertainty regarding the 

amount of carbon emissions that will be subject to the trading scheme, this presents an 

interesting area to investigate. In particular, including the carbon emission price 

uncertainty into the analysis may help understand whether the trading scheme as 

currently implemented in Europe is a strong enough incentive for airlines to purchase 

new technology packages improving the fuel-burn of their existing assets.  
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8.4.2 Calibration of jet-fuel price model 

The jet-fuel price analysis is performed using data from the United States Energy 

Information Administration representing the historical time series of U.S. Gulf Coast 

kerosene-type jet-fuel spot price [34]. The time series is plotted in Figure 111 and looks 

similar to many financial time series with high volatility and no obvious autocorrelation 

structure. 

  
Figure 111: Closing price of jet fuel (left graph); Continuously compounded daily jet-fuel price 

returns (right graph) 

Inspection of the continuous returns of the price time series indicates a bell-

shaped distribution of the return centered on zero with some clustering of high volatility 

as shown in Figure 112. Despite this heteroscedasticity, a stochastic model similar to a 

random walk, the Geometric Brownian Motion (GBM), is hypothesized. 

 

 

 
Figure 112: Distribution of daily jet-fuel 

price returns 
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the correlation structure of increments which should be uncorrelated under the geometric 

Brownian motion assumption. The null hypothesis for these tests is that increments are 

uncorrelated. The autocorrelation structure is studied at lags 2, 4, 8, and 16 days. As 

shown in Table 72, the p-values are all above the 5% level of significance and therefore 

all tests fail to reject the geometric Brownian motion hypothesis. 

Table 72: Variance ratio tests for jet-fuel price time series  

 
Lag 2 Lag 4 Lag 8 Lag 16 

Daily return average 

 (%) 
-0.005 -0.005 -0.005 -0.005 

Daily return variance 

 (%) 
0.00077 0.00077 0.00077 0.00077 

Lagged variance 

 (%) 
0.00076 0.00072 0.00064 0.00067 

Variance Ratio (2) Standardized 

Test Statistic 
-0.162 -1.095 -1.765 -0.928 

Variance Ratio (2) Standardized 

Test Critical Value (5%) 
1.960 1.960 1.960 1.960 

p-value 87.2 % 27.3 % 7.8 % 35.3 % 

The second test is the Cowles-Jones Ratio test described again in Campbell et al. 

[279]. It checks the dependency of the increments which should be independently and 

identically distributed under the geometric Brownian motion assumption. The null 

hypothesis for this test is that increments are independently and identically distributed. 

As shown in Table 73, this test also fails to reject the geometric Brownian motion 

hypothesis at the 5% level of significance. This means that the apparent 

heteroscedasticity previously observed is not significant. 

Table 73: Cowles-Jones (CJ) ratio test for jet-fuel price 

CJ Value 1.00 

CJ Test Value 0.06 

Critical Value (5%) 1.960 

p-value 95.1% 
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Based on these results, a geometric Brownian motion is used to model the 

stochastic process driving the price of jet-fuel. The stochastic differential equation is 

given in Eq. 60 with the Wiener process (Wt), the spot price (St), the yearly drift (μ) that 

measures the trend, and the yearly volatility (σ) that measures the variability of the 

process over time. 3�� = ! ∙ �� ∙ 3� + " ∙ �� ∙ 3�� �A = 2.75 ��$ ;  ! = .005% ;  " = 43.9% 
Eq. 60 

The geometric Brownian motion model is fine to represent the past evolution of 

the spot price of jet-fuel. In particular, it yields good information regarding the volatility 

of the jet-fuel price process. However, it does not give any information regarding the 

price of jet-fuel in the future and there is no reason to hypothesize that the future will 

repeat the past or follow the same trends as those recently experienced. In order to look 

into the future so as to estimate the drift of the process, derivative contracts called futures 

are used. Futures are contract that allow the purchase ahead of time of a specific amount 

of a commodity to be delivered at a specific date for a pre-specified price. In an efficient 

market, the market price of futures on jet-fuel reflects all the knowledge of the market 

and therefore the expectation of the market regarding its evolution in the future. 

Consequently, the initial value and the drift of the geometric Brownian motion process 

are calibrated using market information concerning futures available from the Chicago 

Mercantile Exchange [281] as shown in Figure 113. 
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3�� = ! ∙ �� ∙ 3� + " ∙ �� ∙ 3�� �A = 1.38 ��$ ;  ! = 7.5% ;  " = 43.9% 

Figure 113: Jet-fuel futures quotes and stochastic process retained 
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(EUA). For instance, Szabo reports that one large European airline started using the 

BlueNext exchange platform in 2012 to buy allowances on the spot market [282]. The 

carbon emission analysis is therefore performed using the time series BNS EUA 08-12 

available on the exchange website for data from February 2008 to June 2012 [283]. This 

time series is plotted in Figure 114 and, like in the previous example, it exhibits high 

volatility with no obvious autocorrelation structure, but with a downward trend. 

  
Figure 114: Closing price of EUA (left graph); Continuously compounded daily returns (right graph) 
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Inspection of the continuous returns distribution displayed in Figure 115 indicates 

a bell-shaped distribution of the returns centered on zero with some clustering of high 

volatility.  

 
Figure 115: Distribution of daily EUA 

price returns 

Based on these observations, a geometric Brownian motion is again hypothesized. 

The same statistical tests described in the previous section for jet-fuel prices are run to 

check whether the GBM assumption for emission costs can be rejected at the 5% level of 

significance. The first set of tests is the Variance Ratio test which is run for lags 2, 4, 8, 

and 16 days. Each time, the geometric Brownian hypothesis cannot be rejected at the 5% 

level of significance as shown in Table 74. 

Table 74: Variance ratio test for CO2 emissions 

 
Lag 2 Lag 4 Lag 8 Lag 16 

Daily return average 

 (%) 
-0.114 -0.114 -0.114 -0.114 

Daily return variance 

 (%) 
0.00075 0.00075 0.00075 0.00075 

Lagged variance 

 (%) 
0.00078 0.00075 0.00073 0.00076 

Variance Ratio (2) Standardized 

Test Statistic 
1.211 0.101 -0.320 0.055 

Variance Ratio (2) Standardized 

Test Critical Value (5%) 
1.960 1.960 1.960 1.960 

p-value (under H0) 22.6 % 91.9 % 74.9% 95.6% 

Next is the Cowles-Jones Ratio test which also fails to reject the geometric 

Brownian motion hypothesis at the 5% level of significance, as shown in Table 75. 
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Table 75: Cowles-Jones (CJ) ratio test for CO2 emission allowances 

CJ Value 1.02 

CJ Test Statistic Value 0.28 

Critical Value at 5% 1.960 

p-value  

(Hypothesis: IID Increments) 
78.3% 

 

Based on these results, a Geometric Brownian Motion is used to model the 

stochastic process driving the price of carbon allowances and its parameters are provided 

in Eq. 61: 3�� = ! ∙ �� ∙ 3� + " ∙ �� ∙ 3�� �� = 8.25 ��þ ;  ! = −28.8% ;  " = 43.5% 
Eq. 61 

As before, to estimate the initial price and the drift of the geometric Brownian 

process, futures contract retrieved from the European Energy Exchange [284] with 

delivery date during the period of interest are used and the results are reported in Figure 

116. 

 

3�� = ! ∙ �� ∙ 3� + " ∙ �� ∙ 3�� �� = 9.62 ��$ ;  ! = 1.53% ;  " = 43.5% 

Figure 116: E.U. Allowance futures quotes and stochastic process retained for subsequent analyses 
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relationship between the two models is likely. Indeed, a period of strong growth in 

Europe may result in higher demand for air transportation and therefore higher prices for 

jet-fuel. Similarly, this higher demand for air transportation may result in more demand 

for carbon permits and therefore higher emission allowance prices.  

The relationship between the price of jet-fuel and the price of carbon permits can 

be captured with a correlation matrix. This matrix is estimated by first cleaning the time 

series to ensure that quotes are available for both prices on the same date, and then 

estimating the correlation between the continuous returns of each time series. The 

correlation matrix is given in Eq. 62 and indicates a correlation of 19% between the two 

data series. �Qé� = � 1 0.1990.199 1 � Eq. 62 

To include this correlation in the two stochastic models previously defined, 

correlated numbers need to be sampled from the standard normal distribution used in the 

geometric Brownian motion. This is performed using a Cholesky decomposition of the 

correlation matrix as shown in Eq. 63. The positive definite correlation matrix is 

decomposed to give a lower-triangular matrix which, when applied to a vector of 

uncorrelated samples, produces a sample vector with the correlation properties of the 

system being modeled. �Qé� = 7 ∙ 7r ;  7 = � 1 00.199 0.979� 
Eq. 63 
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CHAPTER 9: EXPERIMENTAL PLAN - VALIDATION 

 

The previous chapter introduced the proof-of-concept application that is used next 

for the validation effort of this research. According to the Project Management Institute 

[201], the purpose of validation is to ensure "that a product, service, or system meets the 

needs of the customer and other identified stakeholders. It often involves acceptance and 

suitability with external customers." In the context of this methodology development, 

validation is performed to ensure that the method and its associated hypotheses actually 

help resolve the issues formalized in the different research questions. As a result, while 

the technical hypotheses were verified to ensure mathematical soundness, the method and 

modeling hypotheses are validated to ensure that the proposed mathematical abstractions 

are indeed adequate, suitable for the envisioned applications, and finally, that they 

properly represent all pertinent aspects of the problem.  

9.1 Real options to model managerial flexibility 

One top-level hypothesis in this research effort is that staggered aviation 

technology investments can be studied using real options analysis in order to capture the 

managerial flexibility offered to decision-makers. Having introduced this method 

hypothesis, a thorough literature review identified some gaps and led to further 

questioning: how can these real options methods be adapted to the problem faced by the 

aviation industry? This resulted in two second-level research questions, “modeling 

research questions”, and one associated second-level hypothesis, “modeling hypothesis”. 

Indeed, assuming that real options inspired methodologies present the best framework for 
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the analyses of long-term and highly uncertain research and development programs, the 

first modeling research question is related to the pertinence of these models to evaluate 

investments in the aerospace industry while the second modeling research question 

pertains to the modeling of flexibility offered to decision-makers to optimally time 

investments. 

Research Question 1.1 — Creation of an option-thinking framework 

Within the context of uncertain product and technology investment analysis, how can 

state-of-the-art option-based valuation methods be improved upon to ensure their domain 

of application is consistent with their underpinning assumptions?  

Research Question 1.2 – Managerial flexibility and timing of investments 

How can the flexibility offered to management to optimally time the launch of new 

product and technology developments be accounted for in a real options framework? 

 

A review of the existing literature on financial options and real options points to 

the use of path-dependent real options for a more accurate depiction of investments in the 

aerospace industry. While retaining the ability to handle the managerial flexibility to fund 

or abandon subsequent phases in staggered developments offered by European real 

options, path-dependent real options enable the relaxation of the deterministic exercise 

time of this flexibility. In other terms, it relaxes one assumption of the more popular 

models by accounting for the additional flexibility to optimally time investment 

decisions: the flexibility is no-longer offered at a single pre-determined point in time but 

rather over an entire decision window. This yields the formulation of the following 

modeling hypothesis: 
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Hypothesis 1.1 – Path-dependent options to model managerial flexibility 

As uncertainty unfolds, technological and market opportunities emerge and disappear. 

Flexible management and flexible timing of investment decisions allow the maximization 

of the upside potential of these opportunities. Path-dependent real options may present a 

means to model the flexibility offered to management in timing technology development 

decisions. 

9.1.1 Validation process and criteria for success 

This hypothesis claims that there is value created by a flexible management able 

to optimally time decisions regarding research and development programs, something not 

typically captured by traditional deterministic discounted cash flow analyses. Besides, the 

hypothesis states that using path-dependent real options enables the modeling of this 

timing flexibility and therefore enables the capture of the additional value created by 

active and astute management. Without loss of generality, timing flexibility refers to the 

ability to make an investment decision over the course of a period of time referred to as 

the decision window. Intuitively, this flexibility creates additional value for the business 

and the aim is to capture this additional value created by astute timing of investments. 

To validate this hypothesis, several investigations are performed using the performance 

improvement package proof-of-concept study. Managerial flexibility is first introduced as 

the option to abandon the development program at the first decision tollgate after an 

initial one-year period of market research. Timing flexibility is introduced next as the 

possibility, if market conditions warrant it, to bring forward this decision tollgate by 
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reducing the amount of time spent on the market research and by starting ahead of 

schedule the following phase of detailed design with the aim of speeding-up the entry 

into service of the technology retrofit. As a consequence, there is a one year decision 

window during which managers have the option to either invest in the subsequent phase 

of the development program or to let the option expire and abandon the development 

program (with no salvage value). Intuitively, this timing flexibility brings additional 

value when compared: (1) against a flexible scenario with the option to invest only at the 

end of the initial market research (basically at the end of the decision window), and (2) 

against a reference determinist scenario with a deterministic investment decision made at 

the start of the initial market research with no possibility of abandonment after. The 

determinist, flexible, and fully flexible approaches are evaluated and compared so that a 

flexibility premium can be quantified in each case. For the hypothesis to be verified, this 

premium must be strictly positive and must be statistically significant at the 5% level of 

significance.   

9.1.2 Preliminary testing and initial struggles 

Repeated experiments with different model parameters indicate that the logit 

market preference model is not adequate due to excessive sensitivity. What happens is 

that, when the price of jet-fuel and the price of carbon emission allowances are varied, 

the value of the program to the manufacturer becomes extremely “volatile”, almost 

binary, with a roughly constant very high value and a roughly constant very low value. 

This is because the market preference is modeled as a steep sigmoid function that is so 

steep that it “saturates early” indicating either a constant 0% market preference if 

conditions are not favorable and almost immediately a 100% market preference whenever 
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the retrofit starts being profitable for airlines. With hindsight, this problem was to be 

expected as the PIP-Light package price does not fluctuate with demand: in the model, if 

the retrofit package becomes desirable for airlines, the demand increases immediately 

without having any form of demand-price equilibrium. 

In order to bypass this problem, a different approach is undertaken in the 

following steps. Instead of estimating the market reaction to the retrofit, the value to the 

manufacturer is modeled as a fraction of the value to all its customers. This assumption is 

not invalid as it was reported in the literature that the NEO option for the Airbus A320 

would be priced at roughly half the saving experienced by the operators [276]. This is the 

option that is retained for the remaining of the research: the manufacturer gets 50% of the 

net present value of the fuel, emission, and maintenance savings experienced by airlines. 

9.1.3 Performance Improvement Package baseline evaluation 

In order to prove that managerial flexibility has value and that this value is 

accounted for in the proposed real options analysis framework, a first step is to perform 

an evaluation of the technology retrofit development program using traditional capital 

budgeting analysis techniques. In Chapter 3, different capital budgeting techniques were 

reviewed and the real options approach was introduced as an extension of the discounted 

cash flow analysis accounting for the value of managerial flexibility. Therefore, it is 

natural to use the discounted cash flow technique as a reference against which the 

improved real options method may be benchmarked.  
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Baseline PIP development program assumptions 

The discounted cash flow analysis requires the estimation of cash inflows and 

cash outflows during the life of the development program. To derive these cash flows, 

assumptions are made regarding the future state of the world and a jet-fuel price and 

carbon emission price scenario is constructed using the expectation of stochastic models 

for the jet-fuel and carbon emission allowances prices presented in Chapter 8. The 

development timeline and the development assumptions are given in Figure 117 and 

Table 76 respectively.  

 
Figure 117: Baseline PIP development timeline 

 

Table 76: Baseline PIP development assumptions 

Market assumptions 

PIP retrofit operating years 25 

Potential market size 6,000 

Market share 40% 

Market size shrink 8% 

Customer types of operations 11 

Customer WACC 7.2% and 10.5% 
 

Development program assumptions 

2018 jet-fuel price (US$/USG) $1.75 

2018 carbon allowance price 
(2015-US$/tCO2) 

$9.91 

Share of economic surplus 40% 

Gross profit margin on sales 50% 

Manufacturer WACC 9.0% 

Initial market research (M US$) 5.0 

Development cost  (M US$) 95.0 
 

Baseline PIP operating benefits for customers 

The operating benefits for prospective customers are computed on a market by 

market basis using the twenty two market segments defined in Chapter 8 using two 

different costs of capital and eleven different types of operations represented by eleven 

different average flight lengths. For each of these markets, the fuel-burn reductions, the 
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carbon emission reductions, and the maintenance expenditure reductions are estimated 

over the projected number of years of operations. The projected time in operations of the 

PIP retrofit package is given in numbers of engine shop visits since the technology 

retrofit is installed during one shop visit and the engine on which it is installed is usually 

retired right before one subsequent shop visit (to save the maintenance expenditure). 

Using a maximum of 25 years in operations, the expected time-on-wing is computed. The 

main outputs of this analysis are given in Figure 118 and more details can be found in 

APPENDIX K. 

PIP-Light expected operating life 

Operations 0-199nm 6 engine Shop Visits 

Operations 0-399nm 4 engine Shop Visits 

Operations 400-1199nm 3 engine Shop Visits 

Ops 1200 nm & beyond 2 engine Shop Visits 

 

Figure 118: PIP-Light impact on (a) fuel-burn, 

(b) CO2 emissions, (c) maintenance costs and 

(table) expected operating life 
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Table 77 represents the net present value of the PIP retrofit for customers in each 

market segment as well as the size of each market segment.  

Table 77: baseline PIP statistics with customer NPV and market size 

Customer NPV 
(in 2018) 

Market Size  
(Engines #) 

Market Segment 
High 

CAPEX 
markets 

Low 
CAPEX 
markets 

High 
CAPEX 
markets 

Low 
CAPEX 
markets 

Operations 0-199 nm $371,934 $273,514 54 54 

Operations 200-399 nm $194,438 $147,179 334 334 

Operations 400-599 nm $191,928 $147,134 460 460 

Operations 600-799 nm $182,340 $145,965 539 539 

Operations 800-999 nm $227,777 $179,505 469 469 

Operations 1000-1199 nm $279,204 $220,802 331 331 

Operations 1200-1399 nm $201,242 $168,292 284 284 

Operations 1400-1599 nm $229,429 $190,451 227 227 

Operations 1600-1799 nm $273,275 $231,374 148 148 

Operations 1800-1999 nm $301,722 $254,200 189 189 

Operations 2000-3500 nm $332,145 $277,210 117 117 

Baseline PIP development program economic analysis  

The PIP development program net present value is computed assuming no 

flexibility during the entire development. The entire investment is committed from the 

start in 2015 and the initial decision is an all-or-nothing decision: even though the 

program is staggered with four phases and three milestones, there is no provision in the 

analysis to either abandon the development at the first milestone before detailed design 

starts in 2016, or at the second milestone before certification and testing starts in 2017, or 

at the third milestone in 2018 right before production starts. The results are shown in 

Table 78. 
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Table 78: Baseline PIP development program value 

Development program financial metrics 

PIP-Light revenues 

(2017-MUS$) 
133.7 

PIP-Light net present value 

(2015-MUS$) 
10.3 

 

9.1.4 Limited-flexibility Performance Improvement Package development 

In this section, some managerial flexibility is introduced and the decision-makers 

have the ability to either launch the development of the performance improvement 

package by funding the detailed design analysis, the certification and testing, and the 

production, or abandon the development altogether at the end of the initial market 

research. 

Limited-flexibility PIP development program assumptions  

In this case, the exploratory phase lasts one year between 2015 and 2016. At the 

end of this exploratory phase, there is flexibility to fund the following phases of 

development stretching until 2018 and the production coming thereafter. The alternative 

is to treat the investment in the exploratory phase as a sunk cost and abandon the project 

in 2016 if the market conditions are not favorable. As a consequence, funding the 

exploratory phase gives decision-makers the option to initiate the following phase of 

development. This is represented using a European call option on the revenues of the 

project with a maturity of one year and an exercise price corresponding to the entire 

development program cost minus the (rather low) cost of the exploratory phase. The 

timeline of the limited-flexibility development program is described in Figure 119. 
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Figure 119: Limited-flexibility PIP development timeline 

Most of the other assumptions for the limited-flexibility PIP development 

program are identical to those presented previously in Table 76. The main difference is 

that two correlated stochastic processes are now used for the evolution of the jet-fuel 

price and for the evolution of the carbon emission allowances using the results of the 

calibration done in Chapter 8 in lieu of the expected 2018 prices of jet-fuel and carbon 

emission allowances. A summary of the main inputs is proposed in Table 79. 

Table 79: Limited-flexibility PIP development assumptions 

Market assumptions 

PIP retrofit operating years 25 

Potential market size 6,000 

Market share 40% 

Market size shrink 8% 

Customer types of operations 11 

Customer WACC 7.2% and 10.5% 
 

Development program assumptions 

2015 jet-fuel price (US$/USG) $1.38 

2015 carbon allowance price 
(2015-US$/tCO2) 

$9.62 

Share of economic surplus 40% 

Gross profit margin on sales 50% 

Initial market research (M US$) 5.0 

Development cost  (M US$) 95.0 
 

Limited-flexibility PIP development operating benefits for customers 

 The operating benefits for the customers presented previously in Table 76 and 

Table 77 are retained for the limited-flexibility PIP development analysis. 

Limited-flexibility PIP development program economic analysis  

 The results are provided in Table 80 and indicate a substantial increase in the 

program value. Because the analysis is based on Monte Carlo simulations which 

introduce some variability in the results, the standard error of the limited-flexibility PIP 
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development program value is also computed which enables the estimation of a 95% 

confidence interval for the program value. It is worth mentioning that the 95% confidence 

interval does not overlap the previously computed baseline program value. This indicates 

that there is a positive and statistically significant premium due to the ability to abandon 

the program in 2016. Mathematically speaking, this increase in value corresponds to the 

ability to prune unfavorable Monte Carlo trajectories at the end of the exploratory phase. 

Managerially speaking, this increase in value corresponds to the value created by astute 

management of business ventures by decision-makers. It is important to realize that this 

added value is not created out of thin air by the real options analysis: it always exists but 

it is not accounted for in typical discounted cash flow analyses. 

Table 80: Limited-flexibility PIP development program value 

Development program financial metrics 

PIP-Light value 

(Excluding exploratory phase) (2014-MUS$) 
18.5 

Exploratory phase cost  

(2014-MUS$) 
5.0 

PIP-Light value 

(Total) (2014-MUS$) 
13.5 

PIP-Light value standard error 

(2014-KUS$) 
57.7 

PIP-Light value 

95% confidence interval (2014-MUS$) 
13.4 to 13.7 

 

9.1.5 Flexible Performance Improvement Package evaluation 

In this section, additional managerial flexibility is introduced and the decision-

makers have the ability to either launch the development of the performance 

improvement package by funding the detailed design analysis, the certification and 
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testing, and the production at any point in time between 2015 and 2016. However, by 

2016, a decision must be made, and if the detailed design phase is not funded, then the 

entire development program is abandoned.  

Flexible PIP development program assumptions  

In this case, the exploratory phase lasts up to one year between 2015 and 2016. 

However, this phase of development can be shortened in order to rush the development 

and start the detailed design phase early if market conditions are very favorable. 

However, by the end of 2016, a decision must be made whether to pursue or abandon the 

PIP development. If the development is abandoned, the investment in the exploratory 

phase is a sunk cost. If market conditions are favorable, then the detailed design, 

certification and testing, and production phases are funded. As a consequence, funding 

the exploratory phase gives decision-makers the option to initiate the following phase of 

development. This is represented using an American call option on the revenues of the 

project with a maturity of one year and an exercise price corresponding to the entire 

development program cost minus the (rather low) cost of the exploratory phase. The 

timeline of the flexible development program is described in Figure 120. Most of the 

other assumptions for the flexible PIP development program are identical to those 

presented previously in Table 79.  

 
Figure 120: Flexible PIP development timeline 
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Flexible PIP development operating benefits for customers 

 The operating benefits for the customers presented previously in Table 76 and 

Table 77 are retained for the flexible PIP development analysis. 

Flexible PIP development program economic analysis  

 The results are provided in Table 81 and indicate a significant increase in the 

program value. Because the analysis is based on Monte Carlo simulations which 

introduce some variability in the results, the standard error of the flexible PIP 

development program value is computed which enables the estimation of a 95% 

confidence interval for the program value. It is worth mentioning that the 95% confidence 

interval does neither overlap the previously computed baseline program value nor the 

previously computed limited-flexibility program value. This indicates that there is a 

positive and statistically significant premium due to the ability to rush the development 

program and start working on the detailed design early to allow an earlier entry into 

service and the capture of additional customers. Mathematically speaking, this increase in 

value corresponds to the ability to select extremely favorable Monte Carlo trajectories 

and bring their larger payoffs (less subject to value leakages) forward in time. 

Managerially speaking, this increase in value corresponds to the value created by astute 

management of business ventures by decision-makers and the possibility to time 

investment decisions early. It is important to realize that this added value is not created 

out of thin air by the real options analysis: it always exists but it is neither accounted for 

in typical discounted cash flow analyses nor in simpler real options models featuring only 

European types of options. 
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Table 81: Flexible PIP development program value 

Development program investment statistics 

Probability of program launch 56% 

Expected time to launch 

 (months) 
8 

Development program financial metrics 

PIP-Light value 

(Excluding exploratory phase) (2015-MUS$) 
19.8 

Exploratory phase cost  

(2015-MUS$) 
5.0 

PIP-Light value 

(Total) (2015-MUS$) 
14.8 

PIP-Light value standard error 

(2015-KUS$) 
49.5 

PIP-Light value 

95% confidence interval (2015-MUS$) 
14.7 to 14.9 

9.1.6 Fully flexible Performance Improvement Package evaluation 

In this section, even more managerial flexibility is introduced and the decision-

makers have the ability to launch the development of the performance improvement 

package by funding the detailed design analysis at any point in time between 2015 and 

2016. However, by 2016, a decision must be made, and if the detailed design phase is not 

funded, then the entire development program is abandoned. In addition, in 2017, 

decision-makers have again the ability to abandon the program or proceed with the 

development and fund the remaining phases of certification and testing and production. 

Fully flexible PIP development program assumptions  

In this case, the exploratory phase lasts up to one year between 2015 and 2016. 

However, this phase of development can be shortened in order to rush the development 

and start the detailed design phase early if market conditions are very favorable. 
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However, by the end of 2016, a decision must be made whether to pursue or abandon the 

PIP development. If the development is abandoned, the investment in the exploratory 

phase is a sunk cost. If market conditions are favorable, then the detailed design phase is 

funded at the end of which decision-makers are again offered the option to fund the 

certification and testing and production phases. As a consequence, funding the 

exploratory phase gives decision-makers the compound option to initiate the detailed 

phase of development which in turn gives the option to initiate the following phases of 

development. This is represented using an American call option with a maturity of one 

year on a European call option on the revenues of the project with a maturity of one year 

and an exercise price corresponding to the entire development program cost minus the 

costs of the exploratory and detailed design phases. The timeline of the fully flexible 

development program is described in Figure 121. Most of the other assumptions for the 

fully flexible PIP development program are identical to those presented previously 

presented in Table 79.  

 
Figure 121: Fully flexible PIP development timeline 

Fully flexible PIP development operating benefits for customers 

 The operating benefits for the customers presented previously in Table 76 and 

Table 77 are retained for the fully flexible PIP development analysis. 
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Fully flexible PIP development program economic analysis  

 The results are provided in Table 82 and indicate a small increase in the program 

value. Because the analysis is based on Monte Carlo simulations which introduce some 

variability in the results, the standard error of the fully flexible PIP development program 

value is computed which enables the estimation of a 95% confidence interval for the 

program value. However, even though the 95% confidence interval does overlap neither 

the previously computed baseline program value nor the limited-flexibility program 

value, it does overlap the 95% confidence interval of the flexible program value. This 

indicates that there is probably a positive premium for the American-European nested 

option (it was just calculated), but the variability in the results prevents it from being 

statistically significant.  

Table 82: Fully flexible PIP development program value 

Development program investment statistics 

Probability of program launch 61% 

Expected time to launch 

 (months) 
7 

Development program financial metrics 

PIP-Light value 

(Excluding exploratory phase) (2015-MUS$) 
19.9 

Exploratory phase cost  

(2015-MUS$) 
5.0 

PIP-Light value 

(Total) (2015-MUS$) 
14.9 

PIP-Light value standard error 

(2015-KUS$) 
62.7 

PIP-Light value 

95% confidence interval (2015-MUS$) 
14.8 to 15.1 

What is more interesting though is that, everything else staying constant, the 

probability of program launch increased from 56% to 61% and the expected time before 
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committing to the launch decreased from 8 months to 7 months. This result makes sense 

because the program does provide an abandonment option further into the future if 

conditions become unfavorable. As a result, the conditions do not need to be as favorable 

as in the simpler American option case to rush the investment and to start investing early 

since the development program is less risky. 

9.1.7 Comparisons 

The PIP-Light program value and the corresponding trigger boundary are given in 

Figure 122. These values are normalized by the development cost for the PIP-Light 

program (US$100,000,000). 
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Figure 122: Trigger boundary for PIP-

Light development program 
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seven months. This yields an indication of the time available to refine or finish maturing 

technologies that are to be used in the PIP-Light package. In the second case, the 

flexibility that decision-makers have to potentially launch the program early is not 

accounted for despite the fact that it could be optimal. As a result, some managerial 

flexibility value is not accounted for and the program value is less.  

Since no other parameter is changed between the first and the second analysis, the 

additional timing flexibility must be what is driving the additional 10% of PIP-Light 

program value. Finally, the 95% confidence interval for the value of the PIP-Light 

development program with timing flexibility (Case 1) does not contain the value of the 

PIP-Light development program with no timing flexibility (Case 2). Therefore, the 

premium for the early-exercise flexibility is statistically significant and the use of a real 

options approach coupled with the use of path-dependent options enables analysts to 

capture the value created by astute management and the value created by timing 

optimally the launch of research and development programs. 

Between the second and the third case, the only change in the modeling 

corresponds to the flexibility to launch the second phase of the development program if 

market conditions are favorable. As a consequence, the resulting change in program value 

corresponds to the flexibility to abandon unprofitable ventures. Thus, the use of a real 

options approach enables analysts to capture the flexibility offered to managers to 

actively steer research and development programs into profitable directions.  

As a conclusion, the implementation and use of the proposed methodology 

enables the capture of the managerial flexibility to abandon unprofitable ventures and the 

managerial flexibility to optimally time investments in development programs. The 
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hypothesis is validated and the additional timing flexibility is accounted for in path-

dependent options. 

Additional observations 

It is worth mentioning that in Figure 122, the trigger boundary crosses the vertical 

axis at a value of 1.52. This means that the present value of the PIP-Light program must 

exceed the investment outlay by 52% in order to trigger an immediate launch of the 

development program. This is to be contrasted with the analysis of the third case using a 

traditional net present value analysis where the positive net present value of the PIP-Light 

development program suggests an immediate investment.  

Sensitivity studies can also be performed to estimate the impact of model 

misspecification on the outcome of the analysis. Let’s assume for instance that the 

stochastic process driving the value of the jet-fuel price features some discontinuities and 

jumps. The same geometric Brownian motion is used but some jumps are added. The 

presence of jumps is in line with one of the first observation of this research where the 

frequency of large jumps (1990, 2006, and 2008) was found to be abnormally high using 

a geometric Brownian motion specification. The additional jumps occur on average once 

per year with a jump size volatility of 40%. The resulting changes in the program value 

and in the early-exercise boundary are displayed in Figure 123.  
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PIP-Light development program value 
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Figure 123: Trigger boundaries 

for the PIP-Light with jet-fuel 

price following a geometric 

Brownian motion and a jump-

diffusion process 

With a significant increase in the volatility of the jet-fuel time series, the value of 

the embedded managerial flexibility becomes higher and results in a significant increase 

in the program development value. The optimal trigger boundary is also shifted up due to 

the increased variability introduced by the additional jumps: indeed, with increased 

variability comes increased likelihood that a currently profitable investment becomes loss 

making within the one year time-window. A simple explanation for this behavior takes 

the opposite scenario: if there were no variability at all, development programs would 

only need to be profitable by a single dollar to be in the immediate exercise area since 

there is no additional information to be gained by waiting, especially if the target market 

for the retrofit shrinks at a rate of 8% per year.  

Another interesting analysis consists in comparing the current results with the 

value of the PIP-Light development program without accounting for the price of carbon 

emission allowances. One expects the value of the development program to decrease 

slightly owing to the decreased incentives airlines have to purchase the PIP-Light retrofit. 

Case 1 and Case 2 are investigated and the values of the program as well as the trigger 

boundary are reported in Figure 124. It seems that the taxation of carbon emissions, as it 
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is currently implemented, has little effects on the overall value of the development 

program. 
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Figure 124: Trigger boundaries for the 

PIP-Light retrofit with (black) and 

without (red) carbon emission allowances 

Investment timing flexibility: comparisons using PIP-Involved 

The analysis proceeds with the second performance improvement package. The 

PIP-Involved is bringing more benefits in terms of operating cost reductions but it is also 

offered to the market several years later when the market has already shrunk significantly 

and at a point in time when airlines may become reluctant to invest in an aging fleet. The 

parameters for this development program are given in Table 83.  

Table 83: Input parameters for PIP-Involved evaluation 

Market size 4,000 engines 

Number of years of operations for PIP-Involved 12 

Number of market segment analyzed 22 

Customer WACC 7.2% and 10.5% 

Market shrink over time 8% per year 

Manufacturer gross profit margin on sales 50% 

PIP-Involved development cost 500M US$ 

Risk free rate of return 2% 

 

The resulting option price and trigger boundary are given in Figure 125. There are 

several striking results: the early-exercise boundary for the PIP-Involved retrofit is 

significantly above the trigger boundary for the PIP-Light project. There are several 
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reasons for this. First, PIP-Involved is a more risky project owing to the late entry into 

service. Consequently, launching the program early requires that the market conditions be 

very favorable. Next, the option value for the PIP-Involved is much lower than the option 

value for the PIP-Light. This is due to the shrinking market between the introduction of 

the PIP-Light (in 2018) and the introduction of the PIP-Involved (in 2022). In fact, about 

30% of the market has vanished due to aircraft retirements. This makes the more 

involved and better performing PIP-Involved retrofit package an unprofitable venture for 

the engine manufacturer.  

 

 

 
Normalized 

Option Value 

PIP- Light 1.230 

PIP Involved 0.3671 
 

Figure 125: Comparison of trigger boundaries for PIP-Light(1) and PIP-Involved(2) and comparison 

of path-dependant option prices for the PIP-Light and PIP-Involved 

9.2 Sequential moves for competitive scenarios 

Having introduced a method hypothesis advocating the use of game theoretic 

analyses, a thorough literature review led to some further questioning: how can these 

game theoretic methods be adapted to the problem under review? Like in the previous 

section, this led to a second-level research question, “modeling research question” and 

an associated second-level hypothesis, “modeling hypothesis”. Indeed, assuming that 

game theoretic methodologies present a good framework for the analysis of competitive 
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research and development programs, the first modeling research question is related to the 

choice of models to evaluate research and development strategies in the aerospace 

industry.  

Research Question 1.3 – Competitive scenario modeling 

How can game theoretic analyses be used to adequately model competition in the 

aerospace industry and how can they be used to identify profitable product and 

technology development strategies? 

 

Reviewing the literature and observing the nature of the competition, oligopolies 

have been observed owing to the significant barriers to entry for prospective competitors.  

Having few competitors reduces the dimension of the problem and makes it easier to list 

the possible strategies of the competitors. In turn, the identification of these strategies 

enables the formulation of sequential competitive games. While research and 

developments are usually made somewhat simultaneously, actual decisions to launch new 

research and development programs are usually made in a sequential fashion with limited 

room for “big surprises”. This means that one competitor is a leader while the others wait 

to see what happens before making a move. This leads to the following modeling 

hypothesis. 

Hypothesis 2.1 – Equilibrium in Sequential moves for competitive scenarios 

Equilibrium-types of solutions in sequential competitive scenarios provide means to 

quantitatively measure the impact of competing designs on profitability and to identify 

robust strategies. 
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Validation process and criteria for success 

This hypothesis assumes that equilibrium-types solutions in a sequential 

competitive scenario lead to the most robust strategy. In order to validate this hypothesis, 

the strategy resulting from an equilibrium solution is compared to all other possible 

solutions and the performance improvement package proof-of-concept study is used 

again. Several strategies are defined and investigated for both the performance 

improvement package retrofit of the original equipment manufacturer as well as for its 

competitor. For this hypothesis to be verified, perturbations to the strategies defined by 

the equilibrium solution are first investigated. If there is no incentive for any of the 

competitors to deviate from the equilibrium solution, then the equilibrium solution is 

deemed robust and the hypothesis is validated.  

Evaluation of strategies using the PIP-Light and PIP-Involved developments 

The first step in the assessment of the various strategies offered to the 

manufacturer and to its competitor is to evaluate the payoffs of these strategies in order to 

later compare them. To do so, an estimate of the revenues is first computed by making 

assumptions regarding the market share in the different scenarios. Starting from the 

present state of the business where the original equipment manufacturer gets 30% of the 

market share with its replacement parts (life-limited parts and other pieces of the engine), 

the introduction of the PIP-Light with its improved aging characteristics and better fuel 

efficiency leads to a gain in market share which reaches 40%. The introduction of the 

PIP-Involved, with its significantly improved performance leading to better fuel 

efficiency and drastically reduced maintenance expenditures, attracts more customers and 

results in a market share of 50%. When the competition introduced its new PMA 
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package, the market shares in all cases are reduced by 10%. The summary of these 

hypotheses is given in Table 84. 

Table 84: Market share assumptions in different competitive scenarios 

 
Competition 

No Move New PMA 

Original 

Equipment 

Manufacturer 

No Move 30% - 70% 20% - 80% 

PIP-Light 40% - 60% 30% - 70% 

PIP-Involved 50% - 50% 40% - 60% 

 

With the assumed market shares for the different scenarios, it becomes possible to 

estimate the value to the manufacturer of the different strategies. These values are 

summarized in Table 85 and described in a more appealing extensive tree representation 

in Figure 126. 

Table 85: PIP development value in different competitive scenarios 

 
Competition 

No Move New PMA 

Original 

Equipment 

Manufacturer 

No Move 0 / 0 -315 / 19.7 

PIP-Light 19.8 / -88 4.8 / 10.8 

PIP-Involved 21.2 / -176  4.5 / 4.5 

 

Once the profitability has been estimated for all scenarios in the sequential game, 

the process of finding the Nash equilibrium can start. Scenario 2 is the Nash equilibrium 

when the engine manufacturer is the first mover in the game and benefits from a head-

start during which little competition is impacting profits. Indeed, in this particular 

scenario, no competitor has any incentive to deviate, and choosing a different course of 

action would not result in an equilibrium. Indeed, if the competitor were to change course 

of action, its profitability would decrease substantially (becoming negative). If the PIP 

manufacturer were to change strategy, the payoff of this new strategy would be 
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substantially less. Hence, it is more profitable for the PIP manufacturer to start investing 

in the PIP-Light early and forfeit the development of the more advanced PIP-Involved. 

 

 

Figure 126: Sequential scenarios under investigation and selection of the Nash equilibrium 
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9.3 Back to overarching research question 

his research question concerns the improvement of current state-of-the-art 

economic assessment methods required to address specific challenges associated with 

long-term and uncertainty-plagued aircraft and engine development programs evolving in 

a competitive environment.  

 

Overarching Research Question – Improvement of value-based design methods 

Within the context of aerospace research and development optimization, how can value-

based design methodologies be improved to identify precursors of programmatic, 

technological, and market opportunities while reflecting the specific challenges 

associated with long-term and uncertainty-plagued aircraft and engine developments, 

and while accounting for the competitive nature of the business? 

 

This overarching research question is linked to three hypotheses. The first 

hypothesis deals with the flexibility offered to decision-makers to take advantage of 

investment opportunities. The second hypothesis deals with a proposed improvement to 

current viability assessments by the introduction of competitive aspects early-on during 

the economic analysis of future concepts. The third hypothesis proposes a concurrent use 

of these two improvements to yield better evaluation of long-term and uncertain research 

and development programs with staggered investments.  

Hypothesis 1 — Real options for valuation with flexibility and uncertainty 

Within the context of aerospace research and development programs, real options 

methods enable the development of value-based design frameworks accounting for the 
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staggered nature of investments and the value created by managerial flexibility in 

uncertain environments. 

Hypothesis 2 — Game theory for investigation of economic robustness with competition 

Within the context of aerospace research and development programs, game theoretic 

methodologies enable transparent and traceable analyses that allow decision-makers to 

better investigate the economic robustness of selected technology and product 

development streams in a competitive environment characterized by uncertain moves by 

competitors. 

Hypothesis 3 — Combined real options and game theoretic analyses 

Real options methodologies combined with game theoretic methodologies allow the 

identification of windows of opportunities and yield analyses superior in term of 

robustness to either of these two analyses performed independently. 

 

The first hypothesis claims that there is value created by active and flexible 

management of research and development programs. In addition, it claims that unlike 

traditional methods, a real option-based method is able to capture the value of this 

flexibility and therefore does not systematically undervalue research and development 

programs. This hypothesis has already been validated when hypothesis 1.1 and all lower-

level hypotheses were verified and validated. 

The second hypothesis claims that strategies identified with the use of a game 

theoretic approach are robust. To validate this hypothesis, it is sufficient to prove that 

competitors have no incentive to deviate from the equilibrium found with the game 

theoretic approach. This has already been verified and validated when hypothesis 2.1 was 
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validated. In fact, the construction of the equilibrium solution ensures that the strategy is 

robust with respect to moves by the competition.  

The third hypothesis pertains to the combination of a real options methodology 

and a game theoretic methodology. The validation is done by comparing the research and 

development program value and the variability of this value in a pure game theoretic 

methodology, in a pure real options methodology, and in a combined methodology. The 

hypothesis has already been validated when the payoffs of the research and development 

program were estimated using real options analysis and used in the sequential 

competitive game.  
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CHAPTER 10: CONCLUSIONS AND CONTRIBUTIONS 

 

The focus of this research endeavor is the analysis of staggered technology 

development programs in the aerospace industry. An extensive literature review indicated 

that the development of new technologies for commercial aviation involves significant 

risk for technologists as these programs are often driven by fixed assumptions regarding 

future airline needs, while being subject to an abundance of uncertainties at the technical 

and market levels. During the literature review, several characteristics typical of these 

developments were identified: the existence of milestones over the course of the 

development program at which the investment may be abandoned or delayed, the 

significant amount of uncertainties surrounding these developments both at the technical 

and market levels, and the long-term nature of these developments which compounds the 

effect of uncertainties over time. 

10.1 Overarching research question 

With the characteristics of technology developments programs stated above, three 

observations were made: (1) integrating competitive aspects early in the design ensures 

that development programs are robust with respect to moves by the competition and this 

helps mitigate some of the competitive uncertainty; (2) disregarding managerial 

flexibility undervalues many long-term and uncertain research and development 

programs; and (3) windows of opportunities emerge and disappear, and manufacturers 

could derive significant value by exploiting their upside potential. 
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In an environment with limited financial resources, decision-makers need to 

prioritize development programs so as to down-select only the most promising ones. This 

is usually done by first constructing a business case for each technology development 

stream, then by assessing their economic viability, and finally by down-selecting the most 

promising one. In order to perform this exercise, decision-makers need to equip 

themselves with the tools necessary to analyze these developments. Several techniques 

suitable for economic analyses and viability assessments have been reviewed, but most of 

them are found to be lacking and unable to capture the specificities of long-term 

developments in the aerospace industry. Consequently, the main objective of this 

research is to answer the following overarching research question: “Within the context of 

aerospace research and development optimization, how can value-based design 

methodologies be improved to identify precursors of programmatic, technological, and 

market opportunities while reflecting the specific challenges associated with long-term 

and uncertainty-plagued aircraft and engine developments, and while accounting for the 

competitive nature of the business?” 

10.2 Method research questions and hypotheses 

Drawing on the literature review, a set of three method hypotheses was 

formulated to answer the overarching research question. The first hypothesis relates to 

the improvement of value-based methodologies to handle long-term uncertain 

developments and to identify precursors of opportunities. The second hypothesis relates 

to the improvement of current viability assessments by the introduction of competitive 

aspects early-on during the economic analysis of future concepts. The third hypothesis 
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relates to the concurrent use of both of these methods to better evaluate the research and 

development programs. 

Using the development of a performance improvement package for turbofan 

aircraft engines as a proof-of-concept study, it was shown that real options analyses do 

help improve the current state-of-the-art value-based methodologies by being able to 

model the usually complex and intertwined uncertainties surrounding technological 

developments, while accounting for the flexibility offered to management to react to the 

realization of these uncertainties. In particular, the real options methodology was able to 

quantify the value created by astute management in the presence of uncertainty by 

evaluating the “flexibility premium” gained by the performance improvement package 

manufacturer through proper use of the flexibility offered to decision-makers. This is one 

aspect that is traditionally absent from typical capital budgeting analyses. 

Still using the performance improvement package proof-of-concept study, it was 

shown that using game theoretic analyses early-on during the technology development 

enables the formulation of robust strategies from which no competitor has any incentive 

to deviate. This was shown by proving that any other strategy would lead to sub-optimal 

profitability.  

10.3 Modeling research questions and hypotheses 

While performing these investigations, it soon became apparent that popular real 

option-based methods were insufficient to handle a complex reality. Their traditional 

domain of application was too narrow for realistic analyses while their implementation 

was too constrained for meaningful analyses. Besides, these popular real option-based 
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methods were not making use of the latest tools and techniques developed for financial 

engineering applications that turn out to be valuable for real options applications.  

The first modeling hypothesis stated that Monte Carlo-based option pricing 

techniques were the most promising framework for the analysis of technology 

investments facing multiple and potentially correlated sources of uncertainty, the 

evolution of which may follow complex stochastic processes. Using the proof-of-concept 

study, this hypothesis was validated by subjecting the retrofit development to the jet-fuel 

price and carbon emission allowance price uncertainties, which are both correlated and 

which may be best described using jump diffusion processes.  

The second modeling hypothesis stated that the use of path-dependent American 

options enables the capture of the flexibility offered to decision-makers to optimally time 

investments. Using the proof-of-concept study, this hypothesis was validated by first 

deriving the early-trigger boundary which helps decision-makers identify the proper set 

of conditions for which early-exercise is optimal, and then, by deriving the early-trigger 

premium which reflects the additional value gained by the manufacturer when allowing 

decision-makers to time their investment decisions optimally. 

The third modeling hypothesis stated that the use of sequential competitive 

scenarios provided a means to measure the impact of competing designs and to identify 

robust strategies. Using the proof-of-concept study which featured three different 

technology development streams, the game theoretic analysis enabled the pruning of the 

strategy space to yield a single robust strategy from which none of the competitors had 

any incentive to deviate. 
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10.4 Technical research questions and hypotheses 

While performing the real options investigations, it became apparent once again 

that popular Monte Carlo-based techniques required some modifications in order to be 

used efficiently in an environment riddled with uncertainties and where the evolution of 

the development program value over time is unobservable and therefore cannot be 

calibrated. 

The first technical hypothesis claimed that using the non-parametric Esscher 

transform enables the change of probability measure required when the stochastic process 

representing the evolution of the development program is unknown and unobservable. 

This hypothesis was verified using canonical tests by comparing the transformed 

distributions induced by simulations under the physical probability measure and 

subsequent Esscher transformations to the equivalent martingale measure for some 

specific cases where the latter are known.   

The second hypothesis claimed that a bootstrap procedure using the resampling 

wheel algorithm enables a resampling of the weighted distributions obtained from the 

Esscher transformation with the aim of generating non-weighted trajectories representing 

the evolution of the development program value under the equivalent martingale 

measure. This hypothesis was also verified using canonical tests by comparing the 

distribution of returns induced by these new resampled trajectories to the known 

equivalent martingale measure for some specific cases where the latter is known. 

The third hypothesis suggests the use of the least-squares Monte Carlo algorithm 

to perform the valuation of real options featuring early-exercise possibilities and the 

construction of the trigger boundary. This hypothesis was partially verified using 
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canonical tests by comparing the price of real options as well as the location and shape of 

the trigger boundaries for specific cases where the value of the real option and the 

location of the trigger boundary can be estimated by other means.  

The verification of this hypothesis highlighted the fact that, although the valuation 

was correct, the position and shape of the trigger boundary were not consistent across 

repeated trials. Another hypothesis was setup which claimed that the implementation of 

variance reduction techniques would improve the generation of trigger boundaries. It was 

verified that control variates, multi-start Monte Carlo simulations, and a restriction of the 

domain of regression of the continuation value do improve the generation of the early-

exercise boundary. It was however proved that the use of quasi-Monte Carlo simulations 

using Sobol’s low-discrepancy sequences was not yielding any benefit over regular 

Monte Carlo simulations.  

All in all, a novel methodology, cross-fertilizing different techniques borrowed 

from the fields of quantitative finance, actuarial sciences, and statistics is proposed to 

answer the overarching research question and all derived sub-research questions. The 

novel method was applied to a PIP retrofit proof-of-concept study about the timing of 

staggered investments under uncertainty. 

10.5 List of contributions  

There are several contributions stemming from this research endeavor. Most of 

them fall under the general theme of the evaluation of staggered investments under 

uncertainty. A couple of contributions are related to the aircraft and engine evaluation 

method proposed as part of the proof-of-concept implementation. Finally, two 
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mathematical derivations dealing with properties of geometric Brownian motions are 

novel to the author’s knowledge and are detailed in the appendix.  

10.5.1 Contributions related to the analyses of staggered investments 

On the real options side, the contributions are as follows: 

• Use of the Esscher transform and its non-parametric approximation to perform a 

change of measure and to obtain risk-neutral distributions. To the author’s 

knowledge, this has never been applied for the evaluation of real options. 

• Use of a resampling wheel algorithm (bootstrap) to generate risk-neutral 

trajectories using a risk-neutral terminal distribution. To the author’s knowledge, 

this technique has never been used to generate trajectories for the underlying 

process in real options applications. 

• Use of least-squares Monte Carlo simulations to generate an early-investment 

boundary for real options applications. The least-squares Monte Carlo algorithm 

proposed by Longstaff and Schwartz has seen only few applications in the real 

options literature to the author’s knowledge. 

• Use of multi-start Monte Carlo simulations to improve the generation of the 

trigger boundary by facilitating the search for the critical price. To the author’s 

knowledge, this technique has never been applied to improve the continuation 

value regression. 

• Use of control variates sampled at exercise of path-dependent options to 

significantly improve the rate of convergence of the least-squares Monte Carlo 

algorithm proposed by Longstaff and Schwartz. To the author’s knowledge, this 

technique has never been applied in real options applications.  
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• Use of the early-investment boundary to identify trigger events and precursors of 

successful research and development programs. By investigating the sensitivity of 

the early-investment boundary to the level of some uncertainties, events triggering 

the need for immediate investments can be detected. 

10.5.2 Contributions related to the proof-of-concept  

On the aircraft and engine evaluation side, the main contribution is as follows: 

• Development of a maintenance model for turbofans powering short to medium 

range narrowbody aircraft. This maintenance model, constructed exclusively 

using public information, is able to estimate maintenance reserves depending on 

the type of operations and the type of environment the turbofan is operated in.  

10.5.3 Other miscellaneous contributions 

Two other contributions stem from the derivation of some properties related to geometric 

Brownian motions: 

• Derivation of the probability that a geometric Brownian motion process hits a 

threshold during a given time-interval. This formula is then applied to estimate 

the probability that the process modeling the evolution of the price of jet-fuel hits 

a certain price-level by a certain date. 

• Derivation of the expected time required for a geometric Brownian motion 

process to hit a threshold. This formula is then applied to estimate the average 

time required for the process modeling the evolution of the price of jet-fuel to hit 

a given price level. 
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10.6 Proposed extensions 

This thesis dissertation develops a novel method to evaluate the economic 

viability of new technology and product developments facing significant market and 

competitive uncertainties and to detect and identify trigger events of successful 

developments. Two main avenues have been identified as promising for future research: 

more complete and thorough competitive analysis, and further extension of the domain of 

applicability of real options techniques. 

Indeed, the competitive aspect has been only brushed over the course of this 

research and more advanced game theoretic and marketing analyses could be performed 

to enhance the forecasting power of the method. In the present research, only sequential 

and non-cooperative games with perfect information have been investigated. A natural 

way forward is the study of simultaneous games where the competitors have no 

knowledge of the development streams of their competitors. In this sense, this would be 

able to capture the surprise-effect due to closely-guarded development programs such as 

the one of the Boeing 787 at the turn of the century. Another natural way forward is the 

study of imperfect games where the different players have only partial information about 

the profitability of their competitors. 

The domain of applicability of real options techniques could be further extended 

by looking at stochastic processes featuring non-stationary and non-independent 

increments. Indeed, the current methodology makes use of the Esscher transformation 

which requires that the logarithm of the underlying stochastic process features stationary 

and independent increments. This includes a wide variety of stochastic processes such as 

Wiener processes, Poisson processes, gamma processes, and inverse Gaussian processes. 
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However, this precludes two types of processes. The first is the set of mean-reverting 

processes which, by virtue of the mean reversion feature, do not have independent 

increments. These processes could prove useful to model the evolution over time of 

commodities for which a long-term return to an equilibrium level makes sense. The 

second is the set of heteroscedastic processes for which the volatility is changing over 

time. These processes could prove useful to model the periods of high volatility following 

significant perturbations in the economies.  
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APPENDIX A:  GEOMETRIC BROWNIAN MOTION 

 

Introduction and some properties 

Brownian motion is named after botanist Robert Brown who, in 1827, observed the 

random movement of particles of pollen suspended in a fluid. It is only decades later that 

the transport phenomenon received the attention of Albert Einstein who worked on the 

modeling aspect as part of the Annus Mirabilis papers [285]. Brownian motion is a 

diffusion process and can be described in mathematics using the Wiener process which is 

characterized by the following properties [185]: 

Definition A.1  

Let W be a Wiener process. It is characterized by these four properties:  

(i) �B0E = 0 

(ii) �B�E is almost surely continuous 

(iii) �B�E has independent increment 

(iv) �B�E −  �B.E ~ 6B0, � − .E 

 

In plain terms, a Wiener process is a stochastic process that starts at zero, with continuous 

sample paths, and with stationary and independent increments. A Wiener process is 

therefore a Markov process, which means that the probability distribution for all future 

values of the process depends only on its current value. It is thus unaffected by past 

values of the process or any other past information. A Wiener process has independent 

increments, which means that the probability distribution for the change in the process 

over any time interval is independent of any other non-overlapping time intervals. 
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Finally, the changes in the process over any finite interval of time are normally 

distributed with a variance that increases linearly with the time interval [286].  

An arithmetic Brownian motion �z with parameter B�′A, !′, "′ E is defined in this 

dissertation as a Wiener process � with a drift term that measures the trend and a 

volatility term that measures the variability of the process over time as shown in Eq. 64: �zB�E = �′A + !′� + "′�B�E  Eq. 64 

 

Looking at this expression, an arithmetic Brownian motion can be understood to be the 

accumulation of independent and identically normally distributed increments over time. 

In infinitesimal terms, the arithmetic Brownian motion has infinitesimal random 

increments 3�z over the infinitesimal time 3� with mean !′3� and variance "′R3�. This 

leads to the following stochastic differential equation shown in Eq. 65: 3�z =  !′3� + "′3� Eq. 65 

 

Such a model specification does not preclude �z from taking on negative values which is 

not consistent with the limited liability concept for asset prices. The always positive 

geometric Brownian motion has been introduced as the exponential of the arithmetic 

Brownian motion and was found particularly helpful in economics. It provides a first 

approximation of the dynamics of exchange rates, natural resources, and more generally 

many asset prices [60]. Using Ito’s lemma, a stochastic differential equation for the 

exponential of an arithmetic Brownian motion is found and displayed in Eq. 66: 

ý-�: � = -}�  �ℎ-' 3� = �!z-}� + 12 -}z"zR� 3� + -}�"′3� Eq. 66 
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The terms may be reorganized by separating the deterministic (drift) and the stochastic 

parts. This yields Eq. 67. Performing a change of variables yields Eq. 68 which is the 

stochastic differential equation for the geometric Brownian motion with 

parameters B!, "E: 3�� = �!z + 12 "zR� 3� + "′3� Eq. 67 3�� = !3� + "3�  �(�ℎ 2ℎ)'
- 9� ,)�()M*- ! = !z + 12 "zR )'3 " = "′ Eq. 68 

 

Investigations of this formula reveal several interesting properties. First and by 

construction, the geometric Brownian motion is never negative. Then, the magnitude of 

increments is directly related to the current realization of the process itself. This means 

that the innovation is relative, a property which is useful when modeling the dynamics of 

price as well as many other natural processes.  

Estimation of parameters 

In this paragraph, the estimation of parameters for the geometric Brownian motion is 

discussed. Even though the geometric Brownian motion is one of the most fundamental 

stochastic processes used in finance, estimating its drift and volatility is in fact not trivial. 

Drift estimation is presented for the sake of completeness as this is not usually helpful for 

derivative pricing, while the estimation of volatility plays a much more important role. 

Drift estimation 

Estimating the drift of a geometric Brownian motion is in fact quite difficult and this will 

be shown in this paragraph. In fact, this assertion makes perfect sense when the geometric 

Brownian motion is used to model prices. Indeed, if economic agents were to know 
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exactly the future expected price, the current price would be adjusted accordingly and the 

drift rate would change [287]. The definition of the geometric Brownian motion with 

constant drift and constant volatility is shown in Eq. 69:  

�B�E = �A-��=å�R ��Xå�B�E  �(�ℎ  �B�E ~ 6B0, √�E Eq. 69 

 

Let’s now take a sample interval between T1 and T2. Let’s subdivide this interval into m 

different subintervals [ti, ti+1] forming therefore a partition of the original interval and 

representing each time at which the asset price is sampled. The observed continuous 

return is given in Eq. 70: 

ln Z�B��XYE�B��E [ = Z! − "R2 [ B��XY − ��E + "B�B��XYE − �B��EE Eq. 70 

  

Summing these returns over the entire interval yields Eq. 71: 

; ln Z�B��XYE�B��E [ =\=Y
�@A  Z! − "R2 [ ; B��XY − ��E\=Y

�@A + " ; �B��XYE − �B��E\=Y
�@A    Eq. 71 

 

Rearranging this expression by observing that the first sum is simply the overall 

continuous return while the second sum is the interval length, and finally taking both the 

expectation and variance yields Eq. 72 and Eq. 73. 

E ªln Z�B�RE�B�YE[« = Z! − "R2 [ B�R − �YE + "�b�B�RE − �B�YEc 
Var ªln Z�B�RE�B�YE[« = Z! − "R2 [ B�R − �YE + "R�)�b�B�RE − �B�YEc 

Eq. 72 

 

Eq. 73 
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The last term �B�RE − �B�YE is a Wiener increment. By definition, it is normally 

distributed 6B0, �R − �YE and its expectation is null. A non-biased estimator of the drift 

and the variance of this estimator are given in Eq. 74:  

!̂ = 1�R − �Y ln Z�B�RE�B�YE[ + "R2   �(�ℎ   �)�B!̂E ≈ "R�R − �Y Eq. 74 

 

As may be seen in the previous equation, the drift term can be estimated by computing 

the continuous return between the first and final observation in the sample. The variance 

of the estimator is only a function of the interval length. There is therefore no benefit in 

having many observations spaced closely together as only increasing the interval length 

can improve the accuracy of the drift term estimator. This is the main difficulty in 

assessing the drift term: shorter intervals yield bad estimates while longer intervals are 

more accurate but may no longer be relevant and may exhibit changes in the supposedly 

constant drift term. 

Volatility estimation 

With constant drift and constant volatility, the geometric Brownian motion may be 

written as: 

�B�E = �A-��=å�R ��Xå�B�E  �(�ℎ  �B�E ~ 6B0, √�E Eq. 75 

 

Let’s now take a sample interval between T1 and T2 and subdivide this interval in m 

different subintervals [ti, ti+1] forming a partition of the interval and representing each 

time at which the asset price is sampled. The observed return of the asset price is 

therefore: 
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ln Z�B��XYE�B��E [ = Z! − "R2 [ B��XY − ��E + "B�B��XYE − �B��EE Eq. 76 

  

Summing the square of these returns over the entire interval yields the following formula: 

; ªln Z�B��XYE�B��E [«R =\=Y
�@A  Z! − "R2 [R ; B��XY − ��ER\=Y

�@A
+ "R ; B�B��XYE − �B��EER\=Y

�@A  
+ 2" Z! − "R2 [ ; B�B��XYE − �B��EEB��XY − ��E\=Y

�@A   
Eq. 77 

 

Looking at the right-hand side of Eq. 77, there are three major terms. With a step size 

sufficiently small, the first term converges to its limit of zero. Using the properties of the 

quadratic variation of the Brownian motion, the second term has a limit equal to "RB�R −�YE. Finally, the last term converges to zero as the step size gets sufficiently small. 

Consequently, an estimator of the volatility of the stochastic process can be computed 

from a time series using the formula in Eq. 78. 

"R§ = 1�R − �Y ; ªln Z�B��XYE�B��E [«R\=Y
�@A  Eq. 78 

Drift and volatility estimations using maximum likelihood estimators 

Another method to estimate both the drift and the volatility of a geometric Brownian 

motion at the same time is to use the maximum likelihood estimators of these two 
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quantities. Campbell et al. [280] developed the formula for the maximum likelihood 

function shown in Eq. 79: 

ℒB!, "E = − /2 lnB2�"RℎE − 12"Rℎ ; Z*' Z�B��XYE�B��E [ − Z! − "R2 [ ℎ[R\=Y
�@A  Eq. 79 

  

Differentiating this expression with regards to ! and "R yields the following estimators of 

the drift and volatility: 

!̂ = "R§2 + 1�R − �Y ; *' Z�B��XYE�B��E [\=Y
�@A    �(�ℎ   �)�B!̂E ≈ "R�R − �Y 

"R§ = 1�R − �Y ; Z*' Z�B��XYE�B��E [ − Z!̂ − "÷R2 [ ℎ[R  \=Y
�@A �(�ℎ   �)�B"R§E ≈ 2"�/  

Eq. 80 

 

Eq. 81 

Numerical application 

For the example described in Chapter 2.1, the jet-fuel price time series from the United 

States Energy Information Administration [34] is used to calibrate a geometric Brownian 

motion. The data ranges from June 1994 to November 2012 but it is truncated after May 

1997 to reflect the data available to the aircraft manufacturer at launch. The 

parameterization of the geometric Brownian motion is done using the maximum 

likelihood estimators and the results are provided in Table 86. 

Table 86: U.S. Gulf Coast Kerosene-type jet-fuel spot price – June 1994 - May 1997 

U.S. Gulf Coast Kerosene-type jet fuel 

Yearly Drift 9.88% 

Yearly Volatility 33.3% 
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Probability of exceeding a threshold at one point in time 

The objective of this paragraph is to demonstrate how to estimate the probability that a 

process following a geometric Brownian motion and having a current value S0 exceeds a 

given value S1 at a certain time t. By definition, the geometric Brownian motion 

representing the process S may be written as in Eq. 75 and the ratio expressed in Eq. 82 is 

distributed as shown: 

*' Z�B�E�A [ = Z! − "R2 [ � + "�B�E ~ 6 µZ! − "R2 [ �, "√�¶ Eq. 82 

 

This immediately yields the probability that the stock price exceeds a certain threshold at 

a given time expressed in Eq. 83: 

PrB�B�E > ��E = 1 − # �*' ����A� − �! − "R2 � �"√� � Eq. 83 

Numerical application 

Using only information available at the time of the commercial launch of the A340-500 

and A340-600 aircraft (in 1997), the probability of the jet-fuel price reaching the level it 

did at these aircraft entry into service (in 2002), and the probability of the jet-fuel price 

reaching the level it did by the time of the last delivery (in 2012) are given in Table 87. 

Looking at these results, it was not unlikely for the spot price of jet-fuel to surge 

drastically as it did during the development and production of the aircraft.   
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Table 87: Probability of jet-fuel exceeding certain thresholds at certain dates 

 

Jet-fuel reaching US$0.67 

at aircraft entry into 

service (2002) 

Jet-fuel reaching US$2.96 

at aircraft last delivery 

(2012) 

Probability 48% 21% 

Probability of hitting a threshold during a time interval 

The objective of this paragraph is to demonstrate how to estimate the probability that a 

process following a geometric Brownian motion exceeds a given price before a given 

time. This is an interesting notion to study because in many engineering problems, there 

are thresholds for some metrics (jet-fuel price for instance) above which some design 

choices may be altered (requirement to infuse fuel-saving technologies in an aircraft 

design for instance). Even if temporary, a stochastic process hitting a specific threshold at 

one point in time may influence the behavior of economic agents. Estimating the 

probability of these occurrences is consequently helpful for designers to perform 

robustness analyses.  

 

Proposition A.1  

Let S be a geometric Brownian motion with initial state ��, drift ! and volatility  ". Let  � ∈ ℝX∗ be a strictly positive real number defining the interval b0, �c. Let  �r  be the 

maximum of S over this interval. Let �� ∈ ℝX∗ be strictly positive real number defining a 

barrier above ��. The probability that S exceeds �� at one point by time T is given by: 8B�, �A, �YE = :�B�� ≥ ��E 
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8B�, �A, �YE = # �*' ��A�Y� + �! − "R2 � �"√� �

+ -01 �2 �! − "R2 � *' ��Y�A�"R �# �*' ��A�Y� − �! − "R2 � �"√� � 

 

Proof: In order to estimate this probability, a small detour in the world of arithmetic 

Brownian motion is warranted to simplify computations. By definition, the arithmetic 

Brownian motion follows the stochastic differential equation given in Eq. 84: 3��z = !z3� + "z�B�E Eq. 84 

 

Using this arithmetic Brownian motion, Harrison [185] states that the cumulative density 

function for an arithmetic Brownian motion starting at zero, having a maximum ��z 
below a barrier � z̈  and ending at time T  below another barrier �Rz  is given in Eq. 85: 8rB�Rz , Sz̈ E = :BS z ≤ �Rz , M z ≤ Sz̈ E    with   M z = sup(S z, 0 ≤ t ≤ TE 

8rB�Rz , Sz̈ E = # Z�Rz − μz�"z√� [ − exp Z2μzSz̈
"zR [ # Z�Rz − 2Sz̈ − μz�"z√� [ 

Eq. 85 

 

This result is the cumulative density function for an arithmetic Brownian motion not 

hitting two distinct barriers: one barrier �Rz  concerns the final value of the process at end-

time, while the other barrier � z̈  is related to the maximum of the process and is thus 

related to the entire process between the initial time and the end time. To yield results 

concerning only the second barrier � z̈  related to the maximum of the process, the first 

barrier �Rz  is set equal to � z̈ . Similarly, to account for a Brownian motion that does not 



www.manaraa.com

453 

start at zero but rather at an initial value �Az , a change of variable �Yz % Sz̈ + SAz  is 

performed and yields Eq. 86: 

8(�, SAz , �YzE = 8rB Sz̈ , Sz̈ E = 8rB�Yz − SAz , �Yz − SAz E 

8B�, SAz , �YzE = # Z�Yz − SAz − μz�"z√� [ − exp Z2μz(�Yz − SAz )"zR [ # ZSAz − �Y − μz�"z√� [ 
Eq. 86 

 

Finally, of interest is the probability of hitting the barrier �Y which is exactly the 

complement of the probability of the maximum being below this barrier. This yields the 

formula for 8%�, the first hitting time of an arithmetic Brownian motion, in Eq. 87: 

8%�(�, SAz , �YzE = # ZSAz − �Yz + μz�"z√� [ + exp Z2μz(�Yz − SAz )"zR [ # ZSAz − �Yz − μz�"z√� [ Eq. 87 

 

Having this cumulative density function for the arithmetic Brownian motion, the next 

step is to establish the formula for the geometric Brownian motion. This is done by 

means of another change of variable: if S follows a geometric Brownian motion with 

mean ! and standard deviation σ, then �z % *' (�) follows an arithmetic Brownian 

motion with mean ! − "R 2⁄  and standard deviation ". Using Ito’s lemma, the stochastic 

differential equation for the logarithm of the original process is indeed given by Eq. 88:  

 �z % *'(�)   �ℎ-'  3Sz % 3(ln (S)) % Zμ − σR2 [ 3� + σ3� % μz3� + "z3� Eq. 88 

 

Using this change of variable, plugging the new value of the drift term shown in Eq. 88, 

and rearranging the cumulative distribution function given in Eq. 87 yield the expression 

for the first hitting time of a geometric Brownian motion in Eq. 89: 
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8'%�(�, �A, �YE = # �*' ��A�Y� + �! − "R2 � �"√� �

+ exp �2 �! − "R2 � *' ��Y�A�"R � # �*' ��A�Y� − �! − "R2 � �
"√� � 

 

Eq. 89 

 

Numerical application 

For the example described in Chapter 2.1, the jet-fuel price time series is modeled as a 

geometric Brownian motion with the parameterization given in Table 86. The probability 

of the jet-fuel price exceeding the price it actually had at the A340-500/600 entry into 

service (in 2002) by the entry into service time, as well as the probability of the jet-fuel 

price exceeding the price it actually had at the A340-500/600 last delivery (in 2012) by 

the time the last aircraft was delivered are given in Table 88: 

Table 88: Probability of jet-fuel price hitting certain thresholds by certain dates 

 

Jet-fuel hitting US$0.67 

by aircraft entry into 

service in 2002 

Jet-fuel hitting US$2.96 

by aircraft last delivery in 

2012 

Probability 72% 34% 

Expected time to hit a threshold during a time-interval 

On a related subject, another metric of interest could be the expected time for a geometric 

Brownian motion to first hit a given threshold. This yields a time-estimate that may be 

used by economic agents in order to get prepared for some specific scenarios. Dixit [288] 

provides a formula in Eq. 90 for the expected time T’ it takes for an arithmetic Brownian 

motion S’ with drift !z to first hit the barrier at �′Y from below: 
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�s�}�@}��t % Å�′Y − �′A!′   (� !z > 0+∞        (� !′ ≤ 0 ¦ Eq. 90 

 

Using the usual logarithmic transformation from arithmetic Brownian motion to 

geometric Brownian motion, the drift is adjusted accordingly, and this yields Eq. 91:  

�s�}@}�t =
ÀÁÂ
ÁÃln ��Y�A�! − "R2   (� ! > "R2

+∞        (� ! ≤ "R2
¦ Eq. 91 

Numerical application 

For the example described in Chapter 2.1 and the jet-fuel price time series parameterized 

as in Table 86, some estimates for the expected times for the fuel price to reach the level 

it did at the A340-500/600 entry into service and final delivery are given in Table 89.  

Table 89: Expected time for the jet-fuel price hitting certain thresholds 

 

Jet-fuel hitting US$0.67 

by aircraft entry into 

service 

Jet-fuel hitting US$2.96 

by aircraft last delivery 

Expected Time 5.8 years 40 years 
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APPENDIX B:  JUMP DIFFUSION PROCESSES 

 

Introduction 

Geometric Brownian motion is without doubt the most widely studied stochastic process 

used to model the evolution of prices. Two properties of the geometric Brownian motion 

are discussed in this paragraph: time-scale invariance and continuity. Time-scale 

invariance means that the statistical properties of the process are similar at a yearly scale, 

a monthly scale, a daily scale, or an hourly scale. In reality, evidence tends to support the 

contrary: price evolutions are jaggy but continuous at the longer-horizon time-scales 

whereas they become highly discontinuous at shorter-horizon time-scales. Similarly, 

diffusion processes cannot generate sudden discontinuities in prices such as those 

observed when market shocks occur. In a diffusion process, large moves are the result of 

the accumulation of many small moves over time, and this cannot be used to easily model 

the sudden moves that are observed in the market [289]. Indeed, fine-tuning the 

calibration to account for these events results in a volatility that is too large during quiet 

periods in between sudden moves, while disregarding these sudden moves results in a 

volatility that underestimates the frequency of these events. In fact, recent events that led 

to large and sudden shocks include the 1979 oil crisis, the 1987 “Black Monday”, and the 

2010 “Flash Crash”, and these are more frequent than the fast decaying tails of normal 

distributions imply. 

Furthermore, the analysis of traded options has led researchers to some striking 

observations regarding the implied volatility and its shape. In the Black-Scholes model, 

the assumptions of stationary process and normally distributed returns should ensure that 
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the theoretical value of a vanilla option is a strictly monotonic and increasing function of 

volatility of the underlying asset. Therefore, a bijection exists between volatility and 

option price meaning that it is possible to derive a single value for the volatility – the 

implied volatility – from the observed price of options. Plotting this implied volatility for 

options with different strike prices and different maturities result in a surface called the 

implied volatility surface. A maturity cross-section of this implied volatility surface 

should be a straight horizontal line. Empirical findings are however different and exhibit 

a curved slopping line called the “volatility smile” [290] [202]. This means that deep out-

of-the-money and deep in-the-money options are priced higher than the Black-Scholes 

model suggests which, in turn, implies possible misspecifications in the model. 

Properties of jump-diffusion processes 

One solution to capture the excess kurtosis often observed in the log-price densities is to 

extend the geometric Brownian motion by adding a compound Poisson1 jump process to 

the diffusion process. The resulting process, called a jump diffusion process, belongs to 

the class of Levy processes and can be described as shown in Eq. 92, where ! is the drift 

of the diffusion process, " is the volatility of the diffusion process,  �� is the Wiener 

process, B6�E�(A is the Poisson process counting the jumps, � is the arrival intensity of the 

Poisson process, and finally, ü� is the series representing the independent and identically 

distributed jump sizes.  �B�E = �A-��, with  p� = !� + "�� + ∑ ü�·��@Y  Eq. 92 

 
                                                 

1 A Poisson process B6�E�≥0  is a stochastic process that counts the number of events �? in the time interval 
between 0 and t. The time between these events, B�? − �?=YE?(Y, is an independent and identically 
distributed sequence of exponential variables. 
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To fully specify the model, the jump size distribution denoted ), must also be defined. 

Various models have been proposed including jumps of deterministic size and jumps of 

random size [134][135][291]. A popular model is the 1976 jump-diffusion model 

pioneered by Merton [134], where the jumps in the log-price are assumed to be normally 

distributed with mean � and volatility Õ. This results in a particularly tractable model 

which is represented in Eq. 93: �B�E = �A-��, with  p� = !� + "�� + ∑ ü�·��@Y  6� ~ :B��E and ü� ~ 6B�, ÕE 
Eq. 93 

 

Using Merton’s model, some stylized results can be derived. Indeed, because the jump 

sizes are normally distributed, their sum is also normally distributed. Consequently, the 

sum in Eq. 93 (conditional on the occurrence of ' jumps) can be written as a single 

normal distribution with properties shown in Eq. 94:   

; ü�?
�@Y  ~ 6B'�, Õ√'E Eq. 94 

 

With the conditional distribution of the log-price expressed as the sum of two normal 

distributions, it becomes possible to further simplify and use a single normal distribution 

as highlighted in Eq. 95. 

*' ��B�E�A � ~ 6 µZ! − "R2 [ �, "√�¶ + 6s6��, Õæ6�t 

*' ��B�E�A � ~ 6 µZ! − "R2 [ � + 6�� , æ"R� +  ÕR6�¶ 

Eq. 95 
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Now, weighting this conditional distribution by the probability of having one, two etc. 

jumps lead to the following unconditional distribution in Eq. 96: 

:B�B�E ≤ �E = ; -=*� B��E?'! 8?,�B�EX�
?@A , �(�ℎ 8?,� �ℎ- *9
'9�/)* 23� Eq. 96 

 

In turn, this can be used to express the price of a vanilla option as a Poisson-weighted 

infinite sum of Black-Scholes option prices, denoted �%}. For instance, the formula for a 

call option on an asset following the Merton jump-diffusion process, �+, , is provided in 

Eq. 97: 

�+,B�B�E, �E = -=�∙� ; -=*Br=�E s�B� − �Et?'! �%}B�?, �, "?EX�
?@A  

�(�ℎ "? = Ï"R + ' -�r=�  )'3 �? = �A-�?.Xg/�� =*Br=�EKZ0¬/�� [X*Br=�E�
  

 

Eq. 97 

Detection of jumps estimation of Merton jump diffusion parameters 

The detection of jumps as well as the calibration of jump diffusion processes is a 

notoriously difficult task. The main reason is the confounding of the continuous-time part 

and the jump part of stochastic processes reported in discrete observations [292]. The 

time-smoothing effect of less frequently sampled observations exacerbates the difficulty 

of detecting sudden jumps because jumps then tend to get averaged out [135]. 

Consequently, a significant amount of research is presently being undertaken in the field 

of empirical finance to provide analysts with methods and techniques to detect jumps and 

calibrate jump diffusion models [289][293][294][295]. Ait-Sahalia [135] uses maximum 

likelihood estimations to study the effect of the presence of jumps on the ability to 
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properly identify the volatility of log-return processes. Lee and Mykland [292] use a 

nonparametric test to detect the presence of jumps in the log-return time series and to 

estimate jump intensity and jump size distribution. Cont and Tankov [296] propose an 

entropy-minimization scheme to calibrate jump diffusion models using observed option 

prices. More recently, Tankov and Voltchkova [290] use observed option prices to 

calibrate jump diffusion processes by minimizing the squared norm of the difference 

between market and model prices. Going further into details is beyond the scope of this 

research but a few techniques and key points are highlighted in the following paragraphs. 

Interested readers are referred to the research work cited for further information. 

Detection of jumps 

Several methods have been proposed to detect the presence of jumps. The procedure 

proposed by Lee and Mykland [292] is retained in this research for two reasons. First, 

this is a non-parametric jump test and therefore the test is robust with respect to model 

specification. Second, the authors demonstrate that their test outperforms competing non-

parametric jump tests such as that of Barndorff-Nielsen and Shephard [293] and that of 

Jiang and Oomen [297]. The intuition behind the test of Lee and Mykland is that if the 

volatility is high, then the occurrence of a jump in the market (leading to an abnormally 

high or low return) may not be distinguishable because the returns stemming from usual 

continuous innovations may be just as high when observed in discrete times. Therefore, 

looking at the magnitude of returns is not sufficient. Instead, to enable the detection of 

jumps, the returns are standardized by the instantaneous volatility which is a measure 

explaining the local variation due to the continuous part of the process. To provide a test 

suitable for non-stationary processes, the instantaneous volatility is used. It is estimated 
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using a rolling window, immediately preceding the time at which a jump detection test is 

performed.  

The instantaneous volatility estimator is not computed using the realized quadratic power 

variation (traditional method to estimate the realized volatility of a geometric Brownian 

motion) since this estimator is inconsistent in the presence of jumps. Instead, the realized 

bipower variation defined in Eq. 98 as the sum of products of consecutive absolute 

returns is used as a nonparametric estimator of the volatility.  

"B�íER1 = lim?→� ; 2ln � �B��E�B��=YE�2 2ln ��B��=YE�B��=RE�2?
�@¨  Eq. 98 

 

With the definition of the instantaneous volatility, the test statistic ℒB(E which tests at 

time �� whether a jump occurred from ��=Y to �� is given in Eq. 99. It uses a rolling 

window of K-1 observations immediately preceding �� to estimate the instantaneous 

volatility. 

ℒB(E = ln � �B��E�B��=YE�"B�íE1  

"B�íER1 = 1G − 2 lim?→� ; 3ln Z �B�¿E�B�¿=YE[3 3ln Z�B�¿=YE�B�¿=RE[3�=Y
¿@�=4XR  

Eq. 99 

 

The asymptotic behavior of the jump detection statistic ℒB(E is then given by Eq. 100 

(without jumps) and Eq. 111 (with jumps) under some mild conditions concerning the 

size of the rolling window BG = 5BΔ�³E �ℎ-�- − 1 < ¯ < −0.5E: 

Å                 69 75/1: ℒB(E ~ 6 �0, 8R�                                             5'- 75/1 ü )� �(/- u: ℒB(E ~ 6 � √8∙9BwE√R∙å∙√:� , 8R�  )'3 lim:�→A ℒB(E = ∞¦  Eq. 100 

Eq. 101 
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On one hand, Eq. 100 indicates that without the presence of jumps, the test statistic 

follows a normal distribution with zero mean and a variance equals to � 2Ñ  . On the other 

hand, Eq. 101 indicates that whenever a jump of amplitude ü occurs at a time u between ��=Y and ��, then the test statistic follows a normal distribution with non-zero mean and 

variance � 2Ñ  . Of interest is the fact that the jump detection statistic exhibits a very 

different behavior when the frequency of observations increases: ℒB(E → ∞  as Δ� → 0. 

The final step consists in selecting the rejection region for the test statistic. Because the 

test statistic exhibits very different behavior in the absence and presence of jumps, it may 

be possible to reject the absence of jump hypothesis. Indeed, in the absence of jump, the 

test statistic follows a normal distribution centered on zero, while in the presence of 

jumps it follows a non-centered normal distribution with a mean that may become very 

large. Consequently, the question becomes how large the test statistic can be without any 

jump. Under the absence of jump hypothesis, the asymptotic distribution of maximums of 

the test statistic is given by Eq. 102, where n is the number of observations: max|ℒB(E| − 7?�? → � �(�ℎ :B� ≤ 0E = exp(−-=�) 

�(�ℎ:         7? % √� ∙ ln ' − ln � + ln(ln ')
Ï16ln '�  , �? = √�√4 ∙ ln ' 

 

Eq. 102 

Calibration of jump intensity 

In the jump diffusion process of Merton, the occurrence of jumps is governed by a 

Poisson counting process of intensity � and the size of jumps is governed by a normal 
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distribution of mean � and volatility Õ. As previously mentioned, jumps are used to 

model the higher-than-expected occurrence of abnormally large returns (leptokurtic 

property) which cannot be explained with a pure diffusive process. Changing the drift of 

the return process (increase or decrease) is not the intent of using jumps. Consequently, 

the combination B�, ÕE is often selected such that it does not impact the drift of the return 

process. This leads in turn to a model with fewer free parameters as shown in Eq. 103: 

B�, ÕE .52ℎ �ℎ)�:  � = − 12 ÕR Eq. 103 

 

Of more interest is the jump arrival intensity � which may be directly estimated using the 

non-parametric jump test presented above. Indeed, since the jump detection test enables 

the detection of a jump within an interval ��=Y to ��, it becomes possible to estimate the 

mean number of jumps within any time interval and in particular the mean number of 

jumps �ì within the unit interval. Lee and Mykland show that this estimator �ì converges 

to the actual intensity of the Poisson counting process �. 
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APPENDIX C:  PROBABILITY MEASURE 

 

The concepts of probability measure, equivalent probability measure, and change of 

probability measure are used extensively throughout this thesis and more generally for 

asset pricing in mathematical finance. In order not to clutter the main text with 

unnecessary mathematical definitions, these concepts are described in the following 

paragraph in greater details. This enables the reader to have access to all relevant 

information to understand the work presented while not being distracted by abstract 

concepts. 

Introduction 

Before digging any further, let’s first introduce some basic building blocks that are 

required to understand some of the aforementioned concepts. For many financial 

applications, the universe of all possible outcomes denoted by Ω refers to the sequence of 

asset prices over time. This space is both infinite since assets may take an infinite number 

of different prices, but also uncountable as it is not possible to enumerate all the prices 

and sequences of prices that may take place. Infinite and uncountable spaces present 

many challenges. The first is the inability to simply sum the probabilities of all elements 

within a subset to yield the probability of the entire subset. Another challenge is the non-

tractability, as it is impossible to describe each and every subset to later assign 

probabilities. 

To reduce this complexity, mathematicians introduced the notion of sigma algebra or 

sigma field (often denoted as σ-algebra) as a collection of subsets of interest for which a 

probability measure is defined. This collection of subsets is designed to ensure that only 
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events of interest are included and it is constructed to ensure that the usual probability 

operations (probability of a union and probability of a complement) can be defined in a 

consistent way for any subset within this σ-algebra. It is therefore defined to ensure 

measurability of each subset contained within the collection. 

Definition C.1  

Let Ω be a non-empty set and let ℱ be a collection of subsets of Ω. ℱ is a σ-algebra 

provided that: 

(i) The empty set ∅ belongs to ℱ, 

(ii) Whenever a set A belongs to ℱ, its complement Ac  also belongs to ℱ 

(iii) Whenever a countable and possibly infinite sequence of sets 4Y, 4R  … belongs 

to ℱ, then their union ⋃ 4���@Y  also belongs to ℱ 

 

In a less abstract way, if S denotes a continuous-time stochastic process (such as an asset 

price), then the information set which contains the observations of S up until time t 

constitutes a σ-algebra denoted by ℱ�. It is called the sigma algebra generated from the 

observations of S and it represents the state of information about which paths are 

possible. In fact, if the possible paths are known, then the impossible paths are also 

known as well as any union of them. Consequently, this interpretation of the  ℱ� σ-

algebra as containing the information learned by all the observations up to time t is 

consistent with the definition given above. Besides, as time marches on, more and more 

information becomes available while past information is still retained. As a result, the 

sequence of σ-algebras ℱ� is increasing with time and represents the evolution of 
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information as it becomes available over time. This collection of increasing σ-algebras  ℱ�  is called a natural filtration.  

Measure and probability measure 

Having defined a collection of subsets that is closed under both the complement and 

countable unions ensures that the space is measurable. A measure is a function which 

assigns a non-negative real number to any subset within the σ-algebra. It can be defined 

as follows: 

Definition C.2  

Let Ω be a non-empty set and let ℱ be a σ-algebra of subsets of Ω. A measure ℙ is a 

function that assigns to every set A in ℱ :  

(i) ℙ (A) ≥ 0 

(ii) ℙ (∅) = 0 

(iii) Whenever 4Y, 4R  … is a countable sequence of pair-wise disjoint sets in ℱ, 

then:  

ℙ µ< 4��
�@Y ¶ = ; ℙB4�E�

�@Y  

 

A special case of measure is the probability measure. A probability measure is a real-

valued function defined on a set of events in a probability space that satisfies the 

aforementioned measure properties while assigning one to the entire probability space. In 

other words, it is simply a normalized measure and its definition is given below. 
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Definition C.3  

Let Ω be a non-empty set and let ℱ be a σ-algebra of subsets of Ω. A probability measure ℙ is a function that assign to every set A in ℱ a real number in [0, 1] called the 

probability of A and written ℙB4E such that: 

(i) ℙ (Ω) = 1 

(ii) Whenever 4Y, 4R  … is a sequence of disjoint sets in ℱ, then:  

ℙ µ< 4��
�@Y ¶ = ; ℙB4�E�

�@Y  

The triple B=, ℱ, ℙE is called a probability space. 

 

Humans are usually very familiar with the historical probability measure (or observable 

probability measure or statistical probability measure). It is directly related to the 

observations that human-beings make and the likelihood they observe. Generally 

speaking, when models are constructed to simulate the experience of the real world, they 

are calibrated using the historical probability measure; hence the other name: statistical 

probability measure. It is however not the most convenient probability measure to work 

with for derivative pricing. 

Equivalent probability measure 

The definition of a probability measure given earlier does not guarantee that it is unique. 

Of interest in finance is the ability to change from one probability measure ℙ to another 

probability measure ℚ without losing any information. For instance, if one trajectory of 

an asset price is possible under one probability measure, it must be possible under an 

equivalent probability measure, even if the likelihood of happening is minute, in order 
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not to lose information about that path. More generally, if one probability measure allows 

something that another probability measure doesn’t, then some information is lost while 

switching from one measure to the other. To avoid this issue, the concept of equivalent 

probability measure is introduced. 

Definition C.4 

Two measures ℙ and ℚ are equivalent if they operate on the same sample space and 

agree on what is possible and what is impossible. Formally, ℙ and ℚ are equivalent if for 

every event A in  Ω:                               ℙB4E = 0 ⟺ ℚB4E = 0 

 

Having both probability measures agree on what is possible and impossible allows the 

definition of likelihood ratios and Radon-Nikodym derivatives which are used to perform 

changes of probability measures. 

Change of probability measure 

A popular technique to price derivatives consists in converting discounted asset price 

processes into martingales which are basically driftless processes. Mathematically, there 

are two venues to do this: either tweaking the process by operating on the values of the 

process, or operating on the probabilities associated with the process. The first technique 

is not used because it requires the knowledge of the drift of the process which is usually 

not available. The second technique is used extensively in finance and it aims at shifting 

the mean of a process by transforming the probability measure. For the purpose of 

derivative pricing, the transformation is done by switching from the historical probability 

measure, under which models describing asset price dynamics are calibrated, to a 
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synthetic probability measure called the risk-neutral measure, under which discounted 

prices are martingales (the expected discounted price is the current price).  

Let’s now look at the mechanics of creating a new probability measure equivalent to the 

original historical probability measure. This is done through an almost surely positive 

random variable Z with expectation equal to one under the original probability measure 

as shown below: 

Theorem C.5 

Let B=, ℱ, ℙ E be a probability space and let Z be an almost surely non-negative random 

variable such that >B?E = �. For @ ∈ A let’s now define ℚB@E = B ?BCEDℙBCE@ . Then: 

(i) ℚ is a probability measure 

(ii) If S is a non-negative random variable, then �ℚB�E = �ℙB� ∙ �E   

(iii) If Z is almost surely strictly positive, then �ℙB�E = �ℚ �}E� for every non-

negative random variable S 

 

To use the proper terminology, the almost surely positive random variable Z with unit 

expectation used to link the two probability measures is called the Radon-Nikodym 

derivative of  ℚ with respect to ℙ. It is usually denoted as follows: 

 � = 3ℚ3ℙ 

More intuitively,  the Radon-Nikodym derivative  may be interpreted using the likelihood 

ratio between two functions �ℙ? and �ℚ?, with each function describing the likelihood of 

the asset price following a particular trajectory described respectively under probability 

measures ℙ and ℚ. In this simplified setting, the Radon-Nikodym derivative 
HℚHℙ is 
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defined as the limit of the likelihood ratio as the “sampling” along trajectories goes to 

infinity. As the ratio must always be defined, the requirement for equivalent probability 

measures also becomes apparent. 

Definition C.6 ℙ and ℚ are two equivalent probability measures. Given a path for a sequence of n 

ordered time increments �Y, �R … �?®, let’s define �Y, �R … �?® the realization of the 

process S at each of these increments. The Radon-Nikodym derivative 
HℚHℙ is defined as 

the limit as n goes to infinity of the likelihood ratio: 3ℚ3ℙ = lim?→� �ℙ?B�Y, �R … �?E�ℚ?B�Y, �R … �?E 

 

Cameron-Martin-Girsanov theorem for change of measure 

In the previous paragraph, the change of probability measure technique has been 

formalized using the Radon-Nikodym derivative. It was presented in a rather general 

setting and did not provide an appealing way to actually perform the change of measure. 

In some specific cases, the transformation can nonetheless be quite elegant. Fortunately, 

this is the case for Brownian motions which happen to be ubiquitous in finance. 

The mapping between a stochastic process expressed under the ℙ measure and expressed 

under the ℚ measure is exactly what the Cameron-Martin-Girsanov theorem provides.  It 

ensures that, under some mild constraints, one can distort a probability measure to change 

the mean of a process. It is expressed as follows: 
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Definition C.7 

Let FG be a Brownian motion under probability measure ℙ and let  HG be an ℱ-previsible 

process satisfying the condition that  �ℙ Z-01 �YR B ��=��å �R 3�rA �[ is finite. Then, there 

exists a measure ℚ such that: 

(i) ℚ is equivalent to ℙ 

(ii) 
HℚHℙ = -01 �− B ��3��rA − YR B ��R3�rA � 

(iii) ��ℚ = �� + B ��3��rA   is a standard Brownian motion under ℚ 

 

In other words, the newly constructed Brownian motion ��ℚ is a driftless Brownian 

motion under the new probability measure ℚ, while the original Brownian motion �� 

now has drift  −�� under the probability measure ℚ. Practically, what this means is that 

by choosing an appropriate process ��, it is possible to eliminate the drift of any 

Brownian motion so as to make it driftless. For financial applications, a proper choice of  �� defines a new probability measure ℚ under which discounted asset price processes are 

martingales.  

Application 

Let’s assume that the asset price is governed by the following stochastic differential 

equation with constant drift ! and constant volatility ". This model can be calibrated 

using real data obtained from historical time series. Therefore, under the historical 

probability measure ℙ, it is given by: 3� =  !�3� + "�3� 



www.manaraa.com

472 

 

Let’s now define H as the following constant: 

� = ! − ��"  

 

Then, using the Cameron-Martin-Girsanov theorem, a new equivalent probability 

measure ℚ is defined, and under this new probability measure, the asset price process can 

be written as: 3� =  !�3� + "�3��ℚ − �"�3� =  !�3� + "�3��ℚ − s! − ��t�3� 

 

Rearranging the terms leads to the following familiar expression: 3� = ���3� + "�3� 

Under this measure, the drift of stock prices is identical to the risk-free rate of return. 

Better said, the discounted price is driftless. This is why this measure is called the risk-

neutral probability measure. Incidentally, the constant � defined by � = �=��å  is usually 

called the risk premium, as it measures the extra return demanded by investors to hold 

one unit of risk. 

Change of measure for some popular processes 

In this paragraph, a change of measure is applied to different popular stochastic 

processes. For illustration purposes, the aim is to change the probability measure so that 

these processes either become risk-neutral or have their drift equal the risk-free rate of 

return. The Radon-Nikodym derivative denoted by �� is also provided.  

• Arithmetic Brownian motion (standard Brownian motion) 
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Let’s start with the density function  �ℙ given in Eq. 104 for a standard Brownian motion 

with constant drift !′ and constant volatility "′ described as 3��z = !′3� + "′3��. For the 

sake of simplicity, the process is assumed to start at zero at the time-origin. 

�ℙB��z, �E = 1"′√2�� -01 Z−B��z − !′�ER2"′2� [ Eq. 104 

 

Let’s now introduce the Radon-Nikodym derivative as shown in Eq. 105: 

�� = 3ℚ3ℙ = -01 µ− 12 Z!′ − ��"′ [R � − !′ − ��"′ ��¶ Eq. 105 

 

The Novikov condition stated in the Cameron-Martin-Girsanov theorem, expressed as 

 �ℙ Z-01 �YR B ��z=��åz �R 3�rA �[ < ∞, is certainly satisfied. The change of measure is done 

using the transformation�ℚB��z, �E = �ℙB��z, �E HℚHℙ�. This leads to the new density �ℚ under 

probability measure ℚ shown in Eq. 106: 

�ℚB��z, �E = 1"′√2�� -01 Z−B��z − !′�ER2"zR� [ ∙ -01 µ− 12 Z!′ − ��"′ [R � − !′ − ��"′ ��¶ Eq. 106 

 

Expanding the previous expression leads to Eq. 107: 

�ℚB��z, �E = 1"′√2�� -01 Z−��zR + 2��z!′� − !zR�R2"zR� + −�!zR + 2���!′ − ���R2"zR
−  !′��z − ����z − !zR� + ��!′�"zR [ 

Eq. 107 
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Simplifying and rearranging the terms in Eq. 107 yield Eq. 108 which is the density of a 

standard Brownian motion with constant drift �� and constant volatility "′. The change of 

measure therefore produced another standard Brownian motion but with a different drift ��. 

�ℚ ���′ , �� = 1"′√2�� -01 �− ���′ − ����22"′2� � ∙ Eq. 108 

 

• Geometric Brownian motion 

Let’s start again with the density function  �ℙ given in Eq. 109 for a geometric Brownian 

motion with constant drift ! and constant volatility " described as 3�� = !��3� +"��3��. For the sake of simplicity, the process is assumed to start at the value �A at the 

time-origin. 

�ℙB��, �E = 1"��√2�� -01 Z−BlnB��E − *'B�AE − !̂�ER2"2� [  �(�ℎ !̂ = ! − "R2  Eq. 109 

 

Let’s now introduce the Radon-Nikodym derivative as shown in Eq. 110: 

�� = 3ℚ3ℙ = -01 µ− 12 Z!̂ − ��" [R � − !̂ − ��" ��¶ Eq. 110 

 

The Novikov condition stated in the Cameron-Martin-Girsanov theorem, expressed 

as �ℙ Z-01 �YR B ��=��å �R 3�rA �[ < ∞, is certainly satisfied. The change of measure is done 
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using the transformation �ℚB��, �E = �ℙB��, �E HℚHℙ� and this leads to the new density �ℚ 

under probability measure ℚ shown in Eq. 111: 

�ℚB��, �E = 1"��√2�� -01 Z−BlnB��E − *'B�AE − !̂�ER2"2� [
∙ -01 µ− 12 Z!̂ − ��" [R � − !̂ − ��" ��¶ 

Eq. 111 

 

Expanding the previous expression yields Eq. 112: 

�ℚB��, �E = 1"√2�� -01 ª−lnB��ER − *'B�AER − !̂R�R2"R� + lnB��E B*'B�AE + !̂�E2"R�
+ lnB�AEBlnB��E − !̂�E2"R� + !̂�slnB��E − *'B�AEt2"R�
+ −�!̂R + 2���!̂ − ���R2"R + −!̂ lnB��E + !̂*'B�AE + !̂R�"R
+ �� lnB��E − ��*'B�AE − ��!̂�"R ß 

Eq. 112 

 

Simplifying and then rearranging the terms as previously done yield Eq. 113 which is the 

density of a geometric Brownian motion with constant drift �� and constant volatility ". 

The change of measure therefore produced another geometric Brownian motion but with 

a different drift ��.  

�ℚB��, �E = 1"��√2�� -01 I−slnB��E − *'B�0E − ���t22"2� J ∙ Eq. 113 
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• Jump-diffusion process 

The jump-diffusion process of Merton [134] is used. This model features a diffusion part, 

similar to a geometric Brownian motion, as well as a discontinuous part. It is assumed 

that the diffusion part and the discontinuous part of the jump-diffusion process are 

independent of each other. The discontinuous part is made of a finite number of jumps, 

the occurrence of which follows a Poisson counting process 6B�E of intensity �. This 

means that the number of jump occurrences during a given time interval is directly 

related to the intensity � as shown in Eq. 114. 

ℙB6B�E = ¸E = B*�E��! -=*�    and    ℙB6B3�E = 1E ≈ �3� Eq. 114 

 

 Provided that a jump occurred, its amplitude is random and denoted by the random 

variable ��. The random variables corresponding to jump sizes are assumed to be 

independent and identically distributed. Such a jump process with random occurrences 

and random sizes is called a compound Poisson process and its mathematical expression 

is given in Eq. 115.  

�B�E = ; ��·B�E
�@Y , � ≥ 0 Eq. 115 

 

In Merton’s model, the jump sizes are not directly modeled. Instead, it is the absolute 

price jump size defined as  �� = ��+ ��−⁄  that is assumed to be log-normally distributed. 

The stochastic differential equation corresponding to this process is shown in Eq. 116. 

The fact that the absolute price jump size is log-normally distributed ensures that a jump 

to ruin can happen, but that an asset initially with positive price cannot end–up having a 
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negative price after a downward jump. In this stochastic differential equation, the term �� − 1 is the relative price jump size.  3�� = !��3� + "��3�� + s�� − 1t��36�  

36� = K1 �(�ℎ 1�9M)M(*(�P �3�        0 �(�ℎ 1�9M)M(*(�P 1 − �3�¦ Eq. 116 

 

In this setting, the Radon-Nikodym derivative of the jump-diffusion process can be 

written as the product of a component related to the diffusion part and a component 

related to the jump part. For the latter, 6� denotes the Poisson process (number of jumps) 

while Ù denotes the density for size of jumps. These two components are expressed in 

Eq. 117  and Eq. 118 respectively. With a single asset, the market is incomplete and there 

may be several risk-neutral measures characterized by different values of �̅ and Ù� . Extra 

stocks are required to determine a unique risk-neutral measure.  

��,��� = -01 Z− 12 �! − ��" �R � − ! − ��" ��[ Eq. 117 

��+L\M = -01 �s� − �̅t�� N �̅ÙOB�¸E�ÙB�¸E6�
¸−1    Eq. 118 

 

The step-by-step derivation of the risk-neutral transformation is beyond the scope of this 

thesis. However, the end-result is formulated in Eq. 119 and an interested reader is 

referred to Cont and Tankov [298] and Shreve [138] for a proper introduction to jump 

processes. Heuristically, the extra expected return due to jumps is removed from the risk-

free drift of the process. 3�� = s�� − ��B�� − 1Et3� + "��3��ℚ + s�� − 1t��36� Eq. 119 
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• Mean-reverting process 

Mean-reverting processes are another class of stochastic processes used extensively in 

finance. They may be used to model either returns that eventually move back to an 

average long-term return or commodity prices that may be disturbed but return towards a 

long-term equilibrium price. Mean-reversion for commodities is usually explained by the 

convenience yield and the cost of carry which affect the value of actually owning 

commodities. A popular mean-reverting process is the Ornstein-Uhlenbeck stochastic 

process. Mathematically, it can be expressed by Eq. 120 where the constant   represents 

the speed of adjustment or speed of mean-reversion, while �̅ represents the long-term 

mean. 3�� =  B�̅ − ��E3� + "3�� Eq. 120 

 

The step-by-step derivation of the risk-neutral transformation is beyond the scope of this 

thesis. However, to get to the risk-neutral form, the value of the market-price of risk for a 

diffusive process is introduced and defined as �. This metric is estimated by observing the 

market and finding another purely diffusive asset for which the market-price of risk can 

be estimated as was presented previously for the geometric Brownian motion. Using this 

result, the risk-neutral form for the Ornstein-Uhlenbeck stochastic process is formulated 

in Eq. 121. An interested reader is referred to Bjerksund and Ekern [299]  for the actual 

derivation. 

3�� =  ��̅ − "� − ��� 3� + "3��ℚ Eq. 121 
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APPENDIX D:  ESSCHER TRANSFORM 

 

The Esscher transform is at the core of this research effort. It is consequently appropriate 

to provide a bit more information about this time-honored technique commonly used in 

actuarial finance and recently adapted for financial engineering applications by Gerber 

and Shiu [140]. The Esscher approximation was initially introduced by Esscher [141] to 

approximate the (upper) tails of total claim distributions by shifting the mean of the 

aggregate claims to a point of interest. In the context of collective risk theory, this 

practice is useful to estimate insurance premiums for stop-loss insurance policies. For 

financial applications, the Esscher transform is applied to the return distribution of one or 

many assets, and the transformation induces a parametric change of probability measure. 

The parameter h (possibly a vector) is chosen to ensure that the discounted price of each 

asset becomes a martingale under the new probability measure. 

For a single probability density function f and a real number h, the Esscher transform ���� 

with parameter h is expressed using the moment generating function M of f as shown in  

Eq. 122. Looking at this definition, the Esscher transform is the product of an exponential 

function and a density function, normalized by a moment generating function. As a result, 

this transformation induces an equivalent probability measure as both distributions agree 

on sets with probability zero.  

����B0, ℎE = -���B0E�BℎE ,   �(�ℎ ℎ ∈ ℝ )'3 �BℎE =  � -���B0E30�
=�  Eq. 122 

 

Now, let’s adapt this definition for a process with stationary and independent increments. 

For positive time indices, let’s denote by S such a process and let’s denote by X its 
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corresponding continuously compounded rate of return process with null value at the 

time-origin, as shown in Eq. 123. X has an infinitely divisible distribution which means 

that it can be described as the sum of independent and identically distributed random 

variables. For asset pricing purposes, this is equivalent to saying that a price observation 

can be done infinitely many times during a given time-interval and that the return 

distributions of the price observations are independent and identically distributed. 

Besides, the return over the entire time interval is, in the limit, the sum of the returns for 

each of the observation.  �B�E = �B0E ∙ -�B�E, �(�ℎ pB0E = 0 Eq. 123 

 

Let’s introduce F as the cumulative density function for these continuously compounded 

returns and let’s call f its density counterpart. Both functions are dependent on two 

variables: the return value x and the time index t as shown in Eq. 124 and Eq. 125: 8B0, �E = :BpB�E ≤ 0E Eq. 124 �B0, �E = 330 B8B0, �EE Eq. 125 

 

Let’s now introduce the moment generating function for the process X as shown in Eq. 

126. Again, it is a function of two variables: one is the usual parameter h of moment 

generating functions while the other is the time index t. 

�Bℎ, �E = � -���B0, �E30�
=�  Eq. 126 
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X is an infinitely divisible distribution and each increment is independent. By assuming 

that M is continuous at t=0, the properties of moment generating functions lead to the 

following identify proven in Breiman [300]: �Bℎ, �E = �Bℎ, 1E� Eq. 127 

 

Having defined the moment generating function M, all the brick-elements are available to 

define the new Esscher transform, denoted by ����, of parameter h for a stochastic process 

X. The definition is given for any positive t in Eq. 128: 

����B0, �, ℎE = -���B0, �E�Bℎ, �E , �9� 0 ∈ ℝ )'3 ℎ ∈ ℝ )'3 � ∈ ℝX Eq. 128 

 

Looking at this definition, the Esscher transform is the product of an exponential function 

and a density function, normalized by a moment generating function. Consequently, the 

expectation or, better said, the integral with regards to x over the entire real space is one. 

In addition, both the original density function � and the Esscher transformed function ���� have the same support. As a result, this transformation induces an equivalent 

probability measure as both distributions agree on zero probability sets. The function ���� 

is the new distribution function of X under the new probability measure and it is called 

the Esscher transform of the original distribution. The moment generating function ���� 

for this new function has three parameters in total: h and t stemming from the Esscher 

transformed distribution itself, as well as the usual moment generating function 

parameter. Its expression is provided in Eq. 129.   



www.manaraa.com

482 

����B�, �; ℎE = ����� s-�B�Et = � -���B0, �, ℎE30�
=� = � -�X���B0, �E�Bℎ, �E 30�

=�  

����B�, �; ℎE = �B� + ℎ, �E�Bℎ, �E  

Eq. 129 

 

The essence of the Esscher technique is to use the parameter h to ensure that the new 

probability measure is an equivalent martingale measure. Let’s call ℎ∗ this specific value 

of h. Under the equivalent martingale measure, the discounted price of assets is a 

martingale which means that the current price of these assets is exactly their expectation. 

As a result, ℎ∗ is determined such that �B0E = �����∗ s-=����B�Et. Using also the fact 

that �B�E = �B0E ∙ -�B�E leads to solving Eq. 130:  �B0E = �����∗ s-=��� ∙ �B0E ∙ -�B�Et = -=��� ∙ �B0E ∙ �����∗ s-�B�Et Eq. 130 

 

After some simplifications, one gets Eq. 131: -��� = ����� s-�B�Et =  ����B�, �, ℎE Eq. 131 

 

Now, using the identity expressed in Eq. 127 yields the identity shown in Eq. 132 for the 

moment generating function of the Esscher transformed distribution: ����B�, �; ℎE = s����B�, 1; ℎEt�
 Eq. 132 

 

Using both the logarithm of Eq. 131 as well as Eq. 132, ℎ∗ is determined such that it 

solves the equation displayed in Eq. 133:  �� = ln s����B1,1; ℎ∗Et Eq. 133 
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There is no closed-form expression for ℎ∗ but any numerical solver or numerical method 

should be able to handle this problem. Gerber and Shiu [151] have shown that the 

parameter ℎ∗ is unique. The corresponding transformation is called the risk-neutral 

Esscher transform and the corresponding probability measure is called the risk-neutral 

probability measure or equivalent martingale measure. The Esscher transformation has 

been applied to various pricing problems in finance. It presents the advantage of being 

both a rather straightforward and versatile technique. Indeed, it can handle many different 

types of processes, including some of the most commonly used stochastic processes in 

finance, such as diffusion processes and diffusion processes with jumps.  

Non-parametric Esscher transform 

The motivation behind the non-parametric Esscher transform methodology is to be able 

to risk-neutralize a distribution of asset prices or cash flows that may be obtained in the 

first place either through observations, bootstrapping techniques, or thanks to 

simulations. The ability to generate a risk-neutral distribution directly from a real, 

observable distribution without the need to create and calibrate a stochastic model can 

prove extremely handy for real options analysis. Indeed, when performing a probabilistic 

design analysis, there is usually a need to evaluate many different concepts and therefore 

many different design points. Calibrating a stochastic model for each and every of these 

data points would be very time-consuming and inefficient. 

A technique that directly fits the data was first proposed for financial applications by 

Pereira et al. [154]. It is a data-driven technique and starts with a distribution of asset 

prices from which the log-return is estimated. To follow usual notations, all empirical 

estimates (empirical rate of return and empirical moment generating function) are 
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denoted with a hat. Using a sample of size n representing the distribution of asset prices, 

a vector of empirical continuously compounded rates of return is constructed and denoted 

by p�§ as shown in Eq. 134. Each index i represents a different scenario and a different 

state of the economy under the historical probability measure. 

p�§ = S0�Y, 0�R, 0�� … 0�?T = ª*' Z ��Y��=YY [ , *' Z ��R��=YR [ , *' Z �����=Y� [ …  *' Z ��?��=Y? [« Eq. 134 

 

This vector is then used to derive the empirical moment generating function, analogous to 

the one defined earlier in Eq. 126. This empirical moment generating function is denoted 

by ��§  and is given by Eq. 135. 

�Bℎ, �E = 1' ; -���>?
�@Y  Eq. 135 

 

Similarly, the empirical moment generating function of the yet to be generated Esscher 

transformed distribution is given by Eq. 136. 

����1B�, �, ℎE = �B� + ℎ, �E�Bℎ, �E  Eq. 136 

 

Continuing to draw the parallel with the “original” Esscher transform technique 

previously presented, the empirically-driven value ℎ∗§ that will make the Esscher 

transform a risk-neutral Esscher transform was originally given by Eq. 133, which in the 

non-parametric case, yields Eq. 137.  

�� = *' �����1s1,1; ℎ∗§t� = *' Z�sℎ∗§ + 1,1t�sℎ∗§, 1t [ Eq. 137 
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Rearranging the terms in Eq. 137 and using the vector of observed returns yield the 

equation for ℎ∗§ described in Eq. 138. 

ℎ∗§  = argQ �ln µ∑ -B�XYE��>?�@Y∑ -���>?�@Y ¶ = ��R Eq. 138 

 

Having solved for ℎ∗§ using numerical methods (such as Newton-Raphson, bisection, 

etc.), the next step is to actually perform the change of measure. How to do that? Since 

the idea is to change the probability measure, one technique is to assign a different weight 

to each and every observation of the original distribution. In the original sample of size n 

representing the original distribution, each observation carries exactly the same weight or 

the same probability, which is exactly 1 'Ñ . The non-parametric Esscher transform is 

going to change these probabilities by assigning a specific weight to each of these 

observations in order to tilt and distort the original probability measure. The resulting 

sample, still of size n, is risk-neutral and represents a drawing from the risk-neutral 

Esscher transform.  

To make the sample risk-neutral, a risk-neutral probability vector ℚ��∗§
 is introduced. Its 

expression is exactly the “empirical” counterpart of the Esscher transform initially shown 

in Eq. 128. It is however normalized to ensure that the sum of its elements is equal to one 

as given in Eq. 139. This set of probabilities is risk-neutral, and it is this set that is used 

for the computation of expectations necessary to perform options pricing.  

ℚ��∗ = U -�∗§���∑ -�∗§��>?�@Y  , -�∗§���∑ -�∗§��>?�@Y  … -�∗§��g∑ -�∗§��>?�@Y     V Eq. 139 
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APPENDIX E:  MODERN PORTFOLIO THEORY 

 

Modern portfolio theory (MPT) aims at formulating an optimization framework for the 

design of financial portfolios. In essence, modern portfolio theory recognizes that 

investing is a trade-off between expected return and risk, and that investors will therefore 

seek the highest possible reward (greed) while avoiding risk as much as possible. In this 

setting, the reward is expressed as the expected rate of return of an asset while the risk is 

expressed as the uncertainty or volatility of the rate of return. The theoretical justification 

for this analysis is Samuelson’s Fundamental Approximation Theorem of Portfolio 

Analysis which proves that under some compactness1 assumptions: 

• The importance of all moments of the return distribution beyond the variance is 

much smaller than the expected value and the variance itself 

• The variance of the return distribution is as important as the expected value of the 

return for the investor welfare 

Consequently, the modern portfolio theory relies on a tradeoff analysis between mean 

and volatility (square root of variance). To illustrate the theory, several examples 

featuring increasingly more complex situations are described and analyzed next. 

 

In an economy featuring two perfectly correlated assets A and B, a portfolio could be any 

combination of these two assets. In this case, both the expected return of the portfolio and 

its volatility would be linear combinations of respectively the expected return and the 

                                                 

1 The distribution of the rate of return on a portfolio is said to be compact if the risk can be controlled by an 
investor at any time. Practically, this means that sudden jumps in stock prices are absent and that as a 
position in a risky portfolio is held for shorter and shorter times, the risk to the investor decreases and 
approaches zero.  
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volatility of assets A and B as shown in Eq. 140 and Eq. 141 below. The blue line in the 

exhibit (a) of Figure 127 represents all the different possible combinations of A and B. �B��E = �{�B�{E + B1 − �{E�B�%E Eq. 140 "�R = �{R"{R + B1 − �{ER"%R + 2�{B1 − �{E"{"% = B�{"{ + B1 − �{E"%ER Eq. 141 

 

In an economy featuring two negatively correlated assets A and B, a portfolio combining 

any of these two assets would have an expected return being linear in the expected return 

of assets A and B as shown in Eq. 142. What is interesting in this case is that there exists 

a portfolio with a specific value of wA for which the risk of the portfolio is neutralized as 

shown in Eq. 143 below and in exhibit (b) of Figure 127. �B��E = �{�B�{E + B1 − �{E�B�%E Eq. 142 "�R = �{R"{R + B1 − �{ER"%R − 2�{B1 − �{E"{"% = B�{"{ − B1 − �{E"%ER 

In particular, there exists a portfolio such that: "� = 0 ⇔ �{ = åTåT=å� 
Eq. 143 

 

 

Figure 127: Expected return of a portfolio with two perfectly and negatively correlated assets 

 

In an economy featuring two uncorrelated assets A and B, a portfolio combining any of 

these two assets would have an expected return being linear in the expected return of 
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assets A and B and would feature a volatility in between the maximum and minimum of 

the two previous examples. This is mathematically described by Eq. 144 and Eq. 145. �B��E = �{�B�{E + B1 − �{E�B�%E Eq. 144 "�R = �{R"{R + B1 − �{ER"%R Eq. 145 

 

A more generic setting is an economy featuring two correlated assets A and B with a 

correlation strictly in between plus and minus one. In this case, a portfolio combining any 

of these two assets would have an expected return being linear in the expected return of 

assets A and B, while its volatility would be subject to the correlation between the two. 

This is shown in Eq. 146 and Eq. 147 below. Again, the volatility of the constructed 

portfolios would be between the maximum and minimum volatilities of the first two 

examples. This is represented by the blue line that curves to the left in the exhibit (a) of 

Figure 128. �B��E = �{�B�{E + B1 − �{E�B�%E Eq. 146 "�R = �{R"{R + B1 − �{ER"%R + 2�{B1 − �{E"{"%ð{% Eq. 147 

 

 

Figure 128: Expected return of a portfolio with two and more correlated assets 
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Let’s now move to an economy featuring more than two correlated assets. There are an 

infinite number of asset combinations: some of these combinations result in portfolios 

with similar rates of return but different volatilities, some others result in portfolios with 

similar volatilities but different rates of return. Of interest is the locus of portfolios that, 

for a given rate of return, have minimum volatilities. These portfolios form a Pareto 

frontier of efficient portfolios and are represented by the yellow contour line in exhibit (b) 

of Figure 128. A risk-averse investor would select an efficient portfolio featuring lower 

volatility whereas a risk-neutral investor may be more inclined to take risks and select an 

efficient portfolio with higher return.  

In the last example, a risk-free asset such as a Treasury bill is added to the previous 

economy. Since the risk-free asset has zero volatility, combinations of the risk-free asset 

and one efficient portfolio from the Pareto frontier may be graphically represented by the 

red line joining these two assets in exhibit (a) of Figure 129. Of interest is the green line 

tangent to the Pareto frontier in exhibit (b) of Figure 129. Since this line has the highest 

slope possible, portfolios along this capital allocation line (CAL) joining the risk-free 

asset and the tangency portfolio dominate all other portfolios from a mean-variance 

standpoint. In this case, the useful part of the efficient frontier collapses to a single 

efficient portfolio called the tangency portfolio.  
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Figure 129: Expected returns and volatilities for portfolios featuring a risk-free asset and many 

correlated assets 

 

Along the capital allocation line, the expected return and risk tradeoff can be 

mathematically represented by equation Eq. 148. 

�B��E = �� + Z�B��E − ��"� [ "M Eq. 148 
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APPENDIX F:  CAPITAL ASSET PRICING MODEL 

 

Modern portfolio theory provides the foundation on which the Capital Asset Pricing 

Model (CAPM) is built. The model developed by Sharpe [61], Lintner [62], and Mossin 

[63] aims at providing a prediction of the relationship that should be observed between 

the expected rate of return of an asset and its risk. In this model, the authors argue that 

only systematic risk should be rewarded since exposure to idiosyncratic risk can be 

mitigated by holding a well-diversified portfolio. This relationship between risk and 

return is of great importance in finance as it helps benchmark the rate of returns of 

investments. 

One of the main assumptions underlying the model is that investors constitute a group of 

rational, risk-averse individuals with homogeneous expectations. This means that despite 

their different initial wealth and different attitudes towards risk, all investors analyze 

securities in the same way and share the same economic view of the world. Having 

access to all the information at the same time, they will all end up with the same expected 

returns, the same correlation matrix, and therefore the same set of efficient portfolios and 

the same tangency portfolio.  

Of interest is the fact that investors will hold various combinations (according to their 

risk-aversion) of the same assets, namely the risk-free asset and the efficient tangency 

portfolio. Since all investors choose to hold the same portfolio of risky assets, this 

portfolio must represent the overall economy and must include all available assets. This is 

why this efficient tangency portfolio is referred to as the market portfolio and the 
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corresponding capital allocation line is referred to as the capital market line as shown in 

exhibit (a) of Figure 130. 

 

Figure 130: Capital Market Line (CML) and Security Market Line (SML) 

 

Another interesting aspect of the capital asset pricing model is that it recognizes that 

investors should not be rewarded for idiosyncratic risk. Indeed, as portfolios get 

diversified, some sources of risks that are asset-specific will eventually see their impact 

diminish (law of averages), while some other sources of risks might even cancel out 

(negative correlations between the returns of some assets). However, as diversified as the 

portfolio might be, there will still be some residual risk because of non-controllable and 

non-predictable macroeconomics factors that affect the overall economy and therefore the 

return of each individual asset. This is the systematic or market risk. As much as there is 

no reason to reward investors exposing themselves to unnecessary risks by not 

diversifying their portfolios, the CAPM is built upon the insight that the risk premium on 

an asset is determined by its contribution to the risk of the overall market portfolio. Let’s 

now translate mathematically the implications of these assumptions by first showing in 

Eq. 149 the contributions of asset i to the return and variance of the market portfolio.  
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�� ∙ ; �� ∙ 79,B��, ��E?
�@Y  �� ∙ S�B��E − ��T Eq. 149 

 

Now, let’s express in Eq. 150 the covariance of asset i with the market portfolio using the 

expanded definition of the market return. It becomes obvious that the contribution of 

asset i to the overall variance of the market portfolio can be re-written in a single 

covariance term as shown in Eq. 151.  

79,B��, ��E = 79, µ��, ; ����?
�@Y ¶ = ; �� ∙ 79,B��, ��E?

�@Y  Eq. 150 

�� ∙ ; �� ∙ 79,B��, ��E?
�@Y = �� ∙ 79,B��, ��E Eq. 151 

 

The reward-to-risk ratio for holding some asset i in the market portfolio is therefore given 

in Eq. 152 by the ratio of the asset contribution to the risk premium over its contribution 

to the variance. It was also proven earlier that the market portfolio is the tangency 

portfolio, and therefore its reward-to-risk ratio (risk premium) is known and given by Eq. 

153. 

þ-�)�3 �9 �(.¸ �9� 4..-� ( = ��S�B��E − ��T�� ∙ 79,B��, ��E = �B��E − ��79,B��, ��E Eq. 152 

þ-�)�3 �9 �(.¸ �9� �)�¸-� :9���9*(9 = �B��E − ��79,B��, ��E = �B��E − ��"R  Eq. 153 

 

There is no reason for the reward-to-risk ratio of asset i to be different from the reward-

to-risk ratio of the market portfolio. Otherwise, the economy would no longer be in 
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equilibrium as demand for one of the most performing asset would drive its return down. 

As a result, these two ratios must be equal. Rearranging the equality between Eq. 152 and 

Eq. 153 leads to Eq. 154 and Eq. 155. The new parameter beta denoted by � is 

introduced as the ratio of the covariance over the market portfolio variance. It measures 

the contribution of asset i to the variance of the market portfolio as a fraction of the total 

variance of the market portfolio.  �B��E − ��"R = �B��E − ��79,B��, ��E   ⇔  �B��E − �� = 79,B��, ��E"R S�B��E − ��T Eq. 154 

�B��E = �� + �S�B��E − ��T Eq. 155 

  

This last equation is the well-known expected return-beta relationship of the CAPM, 

which defines the theoretical risk premium demanded by investors for each asset in the 

economy. This relationship can be graphically portrayed as the security market line 

(SML) shown in exhibit (b) of Figure 130. Despite the similarity between the capital 

market line and the security market line, there is a fundamental difference between the 

two. Contrary to the capital market line which links reward and risk for an entire and 

well-diversified portfolio (hence standard deviation the measure of risk), the security 

market line links reward and risk for individual assets (hence beta the measure of risk). 
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APPENDIX G:  BLACK-SCHOLES-MERTON OPTION 

PRICING MODEL 

 

The Black-Scholes-Merton model is a mathematical model of a financial market 

containing certain derivative instruments. With this model, Fischer Black and Myron 

Scholes were able to derive analytical formulas for the market price of the simplest 

financial options (European call and put options also called plain vanilla options). The 

derivation of this formula in 1973 was immediately embraced by practitioners and led to 

a boom in the trading of derivatives worldwide. 

Setting up the Black-Scholes-Merton model 

The idea introduced by Black and Scholes in their seminal paper [66] is to design 

a self-financing portfolio consisting of one share of the underlying stock as well as some 

quantity of the option such that the entire portfolio is riskless. The riskless portfolio 

means that it is insensitive to changes in the price of the underlying, and the rate of return 

of the portfolio is exactly the risk-free rate of return. To simplify the analysis, Black and 

Scholes make several assumptions regarding the market model:  

• No arbitrage opportunity which precludes the possibility of riskless profit. 

• Underlying stock �B�E does not pay any dividend or any other distribution. 

• Possibility to borrow or lend cash at the same constant short-term interest rate r. 

• No transaction cost on buying or selling the stock �B�E or the option �B�E. 
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• Ability to buy or sell any amount of the underlying stock �B�E of the associated 

option �B�E or a riskless bond. This includes positive amounts (long position), negative 

amounts (short position), as well as fractional amounts. 

• Underlying stock �B�E follows a geometric Brownian motion with a constant 

trend µ and a constant volatility ". A geometric Brownian motion is a continuous-time 

stochastic process which satisfies the following stochastic differential equation in Eq. 156 

where W is a Wiener1 process: 3� = !�3� + "�3� Eq. 156 

 

The value of the riskless portfolio made of one share of the underlying as well as θ shares 

of the options at time t is given by the following formula in Eq. 157: 

ΠB�E = �B�E + θVBtE Eq. 157 

 

The self-financing assumption means that the change in value of the portfolio is due only 

to the change in value of the assets within the portfolio as shown in Eq. 158: 3W = 3� + X3� Eq. 158 

 

Using Ito's lemma, we have Eq. 159: 

3� = ZY�Y� + !� Y�Y� + 12 "R�R YR�YR�[ 3� + "� Y�Y� 3� Eq. 159 

                                                 

1 Wiener process: A Wiener process is a continuous-time stochastic process named for Norbert Wiener. It is 
characterized by the following properties: 

 i) W0 = 0 
 ii)The function t → Wt is almost surely continuous everywhere 
 iii) Wt has independent increments with Wt-Ws normally distributed N(0, t-s) 
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And therefore Eq. 160: 

�� = Z!� + X Y�Y� + !�X Y�Y� + 12 X"R�R YR�YR�[ 3� + �"� + X"� Y�Y�� 3� Eq. 160 

 

Under this set of assumptions, the value of the option depends only on the price of the 

stock as well as on the time. Therefore, it is possible to create a hedged position which is 

absolutely risk-free. This means that the rate of return is certain and is exactly the risk-

free rate of return. Mathematically, this means that the deterministic part of Eq. 160 is 

equal to the risk-free interest rate and the stochastic part is null. 

For the stochastic part (dW): 

"� + X"� Y�Y� = 0 ⟺ X = − Y�Y� Eq. 161 

 

For the deterministic part (dt): 

!� + X Y�Y� + !�X Y�Y� + 12 X"R�R YR�YR� = �Π = �B� + XVE Eq. 162 

 

Dividing by θ (which is never null since the ratio 1/θ  is never infinite) and then 

simplifying using the left-hand side of Eq. 161 yields Eq. 163: 

Y�Y� + 12 "R�R YR�YR� = � ��X + V� Eq. 163 
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Rearranging the terms in Eq. 163 using the right-hand side of Eq. 161 leads to the Black-

Scholes-Merton partial differential equation displayed in Eq. 164: 

Y�Y� + 12 "R�R YR�YR� + �� Y�Y� − �� = 0 Eq. 164 

Solving for the derivative price 

The Black-Scholes-Merton partial differential equation is called backward 

parabolic. To solve such an equation, initial and terminal conditions (at maturity) are 

required. The terminal condition is given by the type of derivative under investigation 

and therefore by the payoff at maturity. The discounted Feynman-Kac theorem briefly 

stated below may be applied to get the solution to the partial differential equation.  

 

Discounted Feynman-Kac theorem 

Suppose that St follows the stochastic process 3�� = !B��, �E3� + "B��, �E3��Z 

Where ��ℚis a Brownian motion under the measure ℚ. 

 Let �B��, �E be a differentiable function of �� and t, and suppose that �B��, �E follows the 

partial differential equation given by: 

Y�Y� + 12 "RB��, �E YR�YR� + !B��, �E Y�Y� − �B��, �E�B��, �E = 0 

With boundary conditions �B0r , �E, then the solution �B��, �E can be expressed as a 

conditional expectation: 
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�B��, �E = �ℚ �-= B �B}[,LEHL\� ∙ �B�r , �E|ℱ�� 
 

Let’s now apply the discounted Feynman-Kac theorem to the Black-Scholes-Merton 

partial differential equation by recognizing the drift term !B��, �E = !�, the volatility 

term "B��, �E = "� and the constant risk-free rate �B�L, 5E = �. This leads to the 

following equation expressed in Eq. 165: �B��, �E = �ℚ �-= B �HL\� ∙ �B�r , �E|ℱ�� = -=�Br=�E�ℚb�B�r , �E|ℱ�c Eq. 165 

 

Now, to go further and obtain a closed-form solution to this mathematical expectation, 

the boundary conditions must be specified. The boundary conditions are dependent on the 

type of derivative that is to be priced. For a European call option with strike price K, the 

boundary condition may be expressed as �B��, �E = max B�� − G, 0E. In this case, the 

European call option price is given by Eq. 166: �B��, �E = -=�Br=�E�ℚbmax B�r − G, 0E|ℱ�c Eq. 166 

 

The stock price follows a geometric Brownian motion and therefore it can be written as 

in Eq. 167: 

�r = ��-��=å�R �Br=�EXås�BrE=�B�Et
 Eq. 167 

 

Therefore, Eq. 168 represents the European call option expression: 

�B��, �E = -=�Br=�E�ℚ ªmax B��-��=å�R �Br=�EXås�BrE=�B�Et − G, 0E|ℱ�« Eq. 168 
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�B�E − �B�E is a normally distributed random variable with mean zero and variance T-

t. The expectation can be replaced by an integral featuring the normal probability density 

function as shown in Eq. 169: 

�B��, �E = -=�Br=�Eæ2�B� − �E � /)0 Z��-��=å�R �Br=�EXå∙� − G, 0[ ∙ - =��RBr=�E30X�
�@X�  Eq. 169 

 

Letting: = 0 √� − �Ñ  , and performing the resulting change of variable yields the 

expectation in Eq. 170: 

�B��, �E = -=�Br=�E√2� � /)0 Z��-��=å�R �Br=�EXåÝ√r=� − G, 0[ ∙ -=Ý�R 3PX�
Ý@X�  Eq. 170 

 

The max function may be removed by choosing an appropriate lower bound for the 

integral. This yields Eq. 171 below: 

�B��, �E = -=�Br=�E√2� � Z��-��=å�R �Br=�EXåÝ√r=� − G[ ∙ -=Ý�R 3PX�
Ý@çè�4}��=��=å�R �Br=�Eå√r=�

 
Eq. 171 

 

This expression can then be split into two parts. Letting: = çè�]���=��=��� �Br=�Eå√r=�  , this leads 

to Eq. 172 and Eq. 173: 

&B��, �E = -=�Br=�E√2� � ��-��=å�R �Br=�EXåÝ√r=� ∙ -=Ý�R 3PX�
Ý@³  Eq. 172 
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�B��, �E = -=�Br=�E√2� � G ∙ -=Ý�R 3PX�
Ý@³  Eq. 173 

 

With �� being a constant, rearranging the first integral I yields Eq. 174: 

&B��, �E = ��√2� � -=YR�Ý�=RåÝ√r=�Xå�Br=�E�3P = ��√2� � -=YRsÝ=å√r=�t�3PX�
Ý@³

X�
Ý@³  Eq. 174 

 

Finally, letting � = P − "√� − � and using the symmetry of the normal distribution leads 

to Eq. 175: 

&B��, �E = ��√2� � -=��R 3� = ��√2� � -=��R 3�=³Xå√r=�
�@=�

X�
�@³=å√r=�  Eq. 175 

 

Plugging the expression for ¯ and using the normal cumulative distribution function N 

gives Eq. 176:  

&B��, �E = ��√2� � -=��R 3�
çè�}�4�X��Xå�R �Br=�Eå√r=�

�@=� = ��6 �ln ���G� + �� + "R2 � B� − �E"√� − � � Eq. 176 

 

With G being constant, rearranging the second integral J and using the symmetry of the 

normal distribution yields Eq. 177 which, after simplification, leads to Eq. 178. 
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�B��, �E = G-=�Br=�E√2� � -=Ý�R 3PX�
Ý@³ = G-=�Br=�E√2� � -=Ý�R 3P

çè�}�4�X��=å�R �Br=�Eå√r=�
Ý@=�  

Eq. 177 

�B��, �E = G-=�Br=�E ∙ 6 �ln ���G� + �� − "R2 � B� − �E"√� − � � 
 

Eq. 178 

 

This finally leads to the Black-Scholes pricing formula for a European call option shown 

in Eq. 179: �B��, �E = �� ∙ 6s3YB�Et − G-=�Br=�E6s3RB�Et 

With: 

3YB�E = ln ���G� + �� + "R2 � B� − �E"√� − �  )'3 3RB�E = ln ���G� + �� − "R2 � B� − �E"√� − �  

Eq. 179 
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APPENDIX H:  IMPLEMENTATION OF REAL OPTIONS 

METHOD 

 

The purpose of the implementation is to develop an environment to verify, validate, and 

finally apply the proposed methodology. In this section, several aspects of the 

implementation are described. The first aspect consists in presenting the architecture 

retained for the implementation of the proposed methodology while substantiating 

choices made. The second aspect consists in presenting the set of tools that are used to 

verify the different steps of the proposed methodology and in discussing the structure 

retained and the choices made.  

Implementation Environment 

Terminology 

Due to the analogies between real options and financial options, the program used to 

assess the value of real options is called a pricer or an option pricer in the following 

paragraphs. 

Language selection 

There are several venues for the implementation of a real option-based program 

evaluation calculator. It is customary, in the financial engineering industry, to use C, C++ 

or Java to code object-oriented option pricing algorithms [301] [302]. This enables the 

use of pre-existing libraries and ensures a fast execution time which can be important, 

especially for algorithmic “nanosecond” trading. Extremely fast runtimes and the 

availability of pre-existing financial engineering libraries are nevertheless not primary 
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requirements for this research. Indeed, most analyses will only be run a limited number of 

times and the fundamentally new methodology proposed in this research will only 

minimally leverage the availability of pre-existing libraries.  

However, one significant goal of this research is to show that a real options approach can 

be used and implemented with some relative ease by people with various backgrounds 

(corporate finance, management, engineering, etc.). In this context, a widely-used and 

ubiquitous programming language found at most workstations within companies would 

be ideal. Consequently, a spreadsheet type of environment augmented by object-oriented 

Visual Basic for Application (VBA) programming is appropriate. Microsoft Excel1 has 

been retained to perform most computations in this research. If the need for faster 

execution speed were to arise, some computationally intensive routines could always be 

translated and coded as Excel add-ins in the C++ language.    

Developing the Real Options Toolbox 

Architecting the implementation 

The implementation is articulated around an Excel Spreadsheet interface where all the 

interactions between the user and the FLAVIA program take place. The inputs include 

the description of the development program to investigate, the description of the real 

option to investigate, the description of the stochastic processes driving the uncertainties, 

and finally the description of some technical parameters used by the real options pricing 

program. Two screenshots of the user interface are displayed in Figure 131 and Figure 

132: the first one shows the interface used for the specification of technical parameters 

                                                 

1 Excel is developed by the Microsoft Corporation, Redmond, WA 
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(such as the number of Monte Carlo replications and time steps and the convergence 

criteria for solvers) while the second one shows the interface used to define the stochastic 

processes modeling the evolution of uncertainties and to describe the staggered 

development timeline. The outputs include an estimate of the real option price as well as 

an approximation of the early-exercise boundary.  
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Figure 131: FLAVIA interface for technical parameters specification 

Time Step Nbr 180

Nested Time Step Nbr 1

Monte Carlo Run 30000

Nested Monte Carlo Run 30000

Resampled Monte Carlo Run 30000

Nested Resampled Monte Carlo Run 30000

Trigger Time Monte Carlo Run 4095

Nested Trigger Time Monte Carlo Run 4095

Resampling Pool Size 1

Nested Resampling Pool Size 1

Esscher Solver Convergence Criteria 1E-11

Esscher Solver Max iterations 100

LSMC Interpolation Basis Size 5

Critical Price Solver Convergence Criteria 1E-04

Critical Price Solver Max Iteration 25

Refined Simulation Starting Points Nbr 50

Boundary Range Factor (Bounded Side) 0.85

Boundary Range Factor (Unbounded Side) 4

Natural Boundary Convergence Crteria 0.0001

Exercise Boundary Regression Basis Size 2

Quasi Monte Carlo Analysis FALSE

Control Variate and Moment Correction TRUE

Multi Start Simulation TRUE

Critical Price Outlier Removal TRUE

Compute Trigger Time Expectation TRUE

Display Intermediate Graph TRUE

Development Program Parameters

Uncertainty Number 1

Milestone Number 2

Program Length (year) 1

Yearly Market Size 200

Program Shrink per Year 4.00%

Profit per Sale 0.000

Risk Free Rate 5.00%

WACC 13.50%

Model ing Parameters
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Figure 132: FLAVIA interface for uncertainties and program timeline specifications 

Development Progra m Timel ine

Decision Milestone Pre-Conceptual Design Detail Design Testing & Certification Production

Phase Decision Window 1.00 1.00

Phase Time Length 1.00 1.00

Phase Investment 1.00 1.20

Investment Decision (Invest / Sell) 1.00 1.00 2 2

Type of Flexibility 2.00 1.00

Stocha stic Process es 2 2 2

Uncertainty Fuel Price CO2 Permit Price 2

Stochastic Process 3 4 1

Current Price (US$) 2 100

Long-Term Drift (yr) 5.00% 20.00%

Dividend Rate  (yr) 4.00% 0.00%

Std Deviation  (yr) 20.00% 44%

Jump Rate 100.00% 100.00%

Jump Size Average -8.00% -2.00%

Jump Size Volatility 40.00% 20.00%

Diffusion Correlation First Uncertainty 1.00 0.60

Diffusion Correlation Second Uncertainty 0.60 1.00

Diffusion Correlation Third Uncertainty -0.20 -0.50

Diffusion Correlation Fourth Uncertainty

Diffusion Correlation Fifth Uncertainty

Diffusion Correlation Sixth Uncertainty

Jump Size Correlation First Uncertainty 1.00 0.80

Jump Size Correlation Second Uncertainty 0.80 1.00

Jump Size Correlation Third Uncertainty -0.50 -0.20

Jump Size Correlation Fourth Uncertainty

Jump Size Correlation Fifth Uncertainty

Jump Size Correlation Sixth Uncertainty

JUMP DIFFUSION JUMP DIFF / COR. JUMPS BM

AMERICAN EUROPEAN

INVEST SELL SELLINVEST



www.manaraa.com

 

508 

The program itself is entirely written in VBA using an object-oriented logic. Interaction 

between the spreadsheet and the VBA code is kept to a minimum to increase execution 

speed. The architecture of the program is articulated around seven different classes which 

are highlighted in Figure 133 and described in the following paragraphs. 

The first class “Development Program” deals with all the computations pertaining to the 

research and development program such as technology modeling, aircraft operating cost 

estimation, market preference estimation, and profit estimation. For verification purposes, 

the option pricer is tested using standard financial options – not real options – so that 

option prices from other sources can be used to check results from the option pricer. 

Therefore an additional subroutine called “Basic value estimation” is added for 

verification purposes. Its goal is to bypass all computations pertaining to a research and 

development business plan.    

The second class “Random Numbers” deals with the generation of random numbers 

according to different types of probability distributions. Sampling for uniform 

distributions, normal distributions, triangular distributions, as well as Poisson 

distributions are implemented in the class. Uniformly distributed random numbers are 

generated using either a uniform number generator or a low discrepancy sequence such as 

the Halton [187] and Sobol [189] sequences. Standard normally distributed random 

numbers are generated with the Box-Muller [303] transform using a source of uniformly 

distributed random numbers. For multivariate distributions, correlations can be accounted 

for using the Cholesky factorization of the correlation matrix [131]. The correlation 

matrix represents the correlation structure between the different dimensions. 
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The third class “Stochastic Process” deals with the simulation of stochastic processes. 

Several types of stochastic processes can be simulated including arithmetic Brownian 

motions, geometric Brownian motions, multi-dimensional geometric Brownian motions, 

as well as jump diffusion processes. The stochastic processes require “time-series” of 

random numbers to model the innovation terms and these are obtained using the random 

number class described previously. When correlation exists between different stochastic 

processes, correlated time-series of random numbers are used for the innovation factors. 

The fourth class “Risk Neutralization” deals with the risk-neutralization of stochastic 

processes simulated under the physical probability measure. All computations pertaining 

to the Esscher transforms are performed using subroutines in this class. This includes the 

computation of the empirical moment generating function, the computation of the 

Esscher transform, as well as the estimation of the Esscher parameter using either a 

bisection solver or a Newton-Raphson solver.  

The fifth class “Resampling” deals with the resampling of the weighted risk-neutral 

distribution to obtain a uniformly distributed discrete approximation of the risk-neutral 

distribution. The basic bootstrap subroutine and a faster, more efficient bootstrap 

subroutine belong to this class.  

The sixth class “Option Type” deals with the algorithms used to evaluate options. The 

algorithms to price European options as well as path-dependent Bermudan and American 

options are implemented in this class. For the analysis of path-dependent options, the 

Longstaff-Schwartz method is used and therefore some regression routines (polynomial 

basis functions) are implemented to estimate conditional expectations.  
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evaluation of the option payoff. Option is left undefined as this class can handle many 

different types of payoffs, stemming from both the analysis of real options and financial 

options. These include the usual vanilla put and call payoffs. 
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APPENDIX I:  SOLVING PARTIAL DIFFERENTIAL 

EQUATIONS WITH FINITE-DIFFERENCE SCHEMES 

 

Finite-difference methods 

Finite-difference methods are widely used numerical schemes that enable the pricing of 

European as well as Bermudan and American options. Finite-difference methods were 

first proposed by Schwartz [176] and Brennan and Schwartz [177] [178]  to solve the 

Black-Scholes partial differential equation. Finite-difference methods present a means to 

obtain numerical solutions to partial differential equations by discretizing the time and 

asset-price space into a mesh of evenly distributed nodes and then approximating partial 

derivatives as finite differences at these nodes. Two popular ways to express these finite 

differences are the forward difference and the backward difference leading to 

respectively an explicit or an implicit finite-difference scheme. The difference is 

highlighted in Figure 134. 

 

Figure 134: Forward (a) and backward (b) finite-difference for the explicit and implicit schemes 
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Because of potential numerical instabilities with explicit schemes, the implicit numerical 

scheme is used and the Black-Scholes partial differential equation approximation is 

expressed in Eq. 180. �B(, 7E − �B( − 1, 7EΔ� + B� − OE7Δ� �B(, 7 + 1E − �B(, 7 − 1E2Δ�
+ "R2 7RBΔ�ER �B(, 7 + 1E − 2�B(, 7E + �B(, 7 − 1EBΔ�ER = ��B(, 7E 

Eq. 180 

Boundary conditions 

Boundary conditions at the extremities of the mesh enable the estimation of the option 

price which is then propagated throughout the mesh using the finite-difference 

approximation of the partial differential equation. The boundary conditions are usually 

set at the maturity of the option (because the option payoff is usually known at maturity), 

for extremely large value of the underlying asset (because the option payoff can be 

approximated for these large values), and for extremely small value of the underlying 

asset (again, because the option payoff can be approximated for these small values). For 

an American call option, these boundary conditions are expressed as shown in Eq. 181: �B�r , �E = maxB�r − G, 0E lim}→X� �s��� , ��t = ��� ∙ -=^�� − G ∙ -=��� 

lim}→A �s��� , ��t = 0 

Eq. 181 

Propagation in the mesh 

Back-propagating the option value using the implicit scheme at each node in the mesh 

requires solving a sequence of linear systems with identical coefficients as shown in Eq. 

182. 
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�B( + 1, 7E = ¿̄�B(, 7 − 1E + �¿�B(, 7E + �¿�B( + 1, 7E 

With ÀÂ
Ã ¿̄ = YR Δ�sB� − OE ∙ 7 − "R7Rt  �¿ = 1 + "R7RΔ� + �Δ�  �¿ = − YR Δ�sB� − OE ∙ 7 + "R7Rt¦  Eq. 182 

 

The sequence of linear systems with identical coefficients can be expressed in matrix 

format and this leads to the matrix equation of Eq. 183. Solving for the solution of these 

systems may be done by inverting the tri-diagonal coefficient matrix.  

 
_̀̀
à �Y �Y 0¯R �R �R ⋯  0     0     0   0     0     0  ⋮ ⋱ ⋮ 0     0     0   0     0     0  ⋯ ¯·=R �·=R �·=R0 ¯·=Y �·=Yeff

fg
_̀̀
à �B(, 1E
�B(, 6 − 1Eeff

fg

= _̀̀
à �B( + 1,1E − ¯Y�B(, 0E�B( + 1,2E…�B( + 1, 6 − 2E�B( + 1, 6 − 1E − �·=Y�B(, 6Eefff

g
 

Eq. 183 

 

Nevertheless, this is accomplished most efficiently by factoring the tri-diagonal matrix 

into a lower and upper triangular parts and then solving each individual systems (L-U 

factorization [304]). Discussing in details the implementation of the implicit scheme for 

finite-difference methods is beyond the scope of this discussion and an interested reader 

is referred to the textbook of Wilmott, Howison, and Dewynne [305].  

Early-exercise boundary 

Another interesting aspect of solving a partial differential equation using a finite-

difference scheme is the ability to directly generate the early-investment boundary. 
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Generating the early-investment boundary is done by checking if the early-exercise 

privilege is exercised at each and every node in the time and asset-price mesh. The 

boundary is approximated at each time cross-section by looking at neighboring nodes that 

have different exercise policies (i.e. the critical stock price is defined by two neighboring 

nodes, one with the option exercised early and one with the option kept open). This 

approximation is used to check the accuracy of the early-exercise boundary generated by 

the proposed approach. 
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APPENDIX J:  IMPLEMENTATION VERIFICATION 

Finite-difference scheme implementation: choosing the appropriate discretization 

For real options featured in staggered research and development investments, a 

reasonable range for the maturity is probably from half a year up to two years while a 

reasonable range for the volatility is probably from twenty percent up to forty percent. 

Below the lower bounds, a real options methodology is probably not warranted as there is 

little uncertainty and little time to learn. Above the upper bounds, investments become 

extremely risky and probably unrealistic. With the time and space ranges defined, the 

granularity of the grid is then investigated to meet a given accuracy target. The accuracy 

is defined using the error criterion in Eq. 184 which represents the average error between 

the Black-Scholes price �%} and the finite-difference price �Ø, for European options. An 

error threshold of 10-4 is retained as it leads to an average accuracy up to the third 

significant digit for the valuation of an at-the-money option with unit strike. 

h = 16 ;|�%}B��E − �Ø,B��E|·
�@Y  Eq. 184 

The graphs in exhibits (a), (b), (c), and (d) of Table 90 show the error criterion for 

different combinations of the number of time and space steps. These four graphs 

represent the lower and upper bounds for the maturity and volatility ranges and indicate 

that the longest maturities and highest volatilities are the most demanding cases. In 

addition, going beyond 500 steps in the space dimension yields little improvement and 

thus a discretization of 500 steps is retained for the space dimension.  
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Table 90: Selection of a time-space grid for European options with unit spot to strike ratios 

 
(a) Maturity: 180 days, Volatility: 20% 

 
(b) Maturity: 180 days, Volatility: 50% 

 
(c) Maturity: 720 days, Volatility: 20% 

 
(d) Maturity: 720 days, Volatility: 40% 

Using a space discretization of 500 steps, the graph in Figure 135 describes how many 

time steps are required to meet the target accuracy for different maturities and volatilities. 

It appears that 400 time steps are sufficient to meet the accuracy target for volatilities up 

to 40% percent and maturities up to two years.  

 

Figure 135: Required number of time steps to meet target accuracy 
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Finite-difference scheme implementation compared to Black-Scholes for option pricing 

Comparing option prices computed using the Black-Scholes equation to those obtained 

with finite-difference schemes may be difficult due to the wide range of magnitudes for 

option prices. In particular, some option prices are very small and computing relative 

errors may prove misleading. Following Knuth [306], the relative difference 3� between 

two estimates �%} and �Ø,is retained. The relative difference is defined in Eq. 185 and 

used to characterize the magnitude of errors shown in Table 91 for notional European put 

and call options. 

3� = |�%} − �Ø,|/)0B|�%}|, |�Ø,|E Eq. 185 

Table 91: Comparison between finite-difference method and Black-Scholes for European put and 

call options  

Option Parameters (a) European Call Option European Put Option 
Spot to 
Strike 
Ratio 

σ rf q T 
Black 

Scholes 

Finite-
Difference 

Method 

Relative 
Difference 

Black 
Scholes 

Finite-
Difference 

Method 

Relative 
Difference 

0.8 20% 2.0% 0.0% 180 3.62E-03 3.63E-03 0.22% 1.94E-01 1.94E-01 0.00% 

0.8 20% 2.0% 0.0% 360 1.43E-02 1.43E-02 0.02% 1.94E-01 1.94E-01 0.00% 

0.8 20% 2.0% 0.0% 720 3.85E-02 3.85E-02 0.02% 1.99E-01 1.99E-01 0.00% 

0.8 20% 2.0% 4.0% 180 2.58E-03 2.58E-03 0.16% 2.08E-01 2.08E-01 0.00% 

0.8 20% 2.0% 4.0% 360 9.40E-03 9.39E-03 0.03% 2.21E-01 2.21E-01 0.00% 

0.8 20% 2.0% 4.0% 720 2.25E-02 2.25E-02 0.08% 2.45E-01 2.45E-01 0.01% 

0.8 20% 8.0% 0.0% 180 5.70E-03 5.71E-03 0.28% 1.66E-01 1.67E-01 0.01% 

0.8 20% 8.0% 0.0% 360 2.38E-02 2.39E-02 0.06% 1.47E-01 1.47E-01 0.02% 

0.8 20% 8.0% 0.0% 720 6.91E-02 6.91E-02 0.00% 1.21E-01 1.21E-01 0.02% 

0.8 20% 8.0% 4.0% 180 4.14E-03 4.15E-03 0.23% 1.81E-01 1.81E-01 0.01% 

0.8 20% 8.0% 4.0% 360 1.64E-02 1.64E-02 0.02% 1.71E-01 1.71E-01 0.01% 

0.8 20% 8.0% 4.0% 720 4.37E-02 4.37E-02 0.04% 1.57E-01 1.57E-01 0.00% 

0.8 40% 2.0% 0.0% 180 3.26E-02 3.26E-02 0.03% 2.23E-01 2.23E-01 0.01% 

0.8 40% 2.0% 0.0% 360 6.85E-02 6.85E-02 0.04% 2.49E-01 2.49E-01 0.01% 

0.8 40% 2.0% 0.0% 720 1.26E-01 1.25E-01 0.05% 2.86E-01 2.86E-01 0.02% 

0.8 40% 2.0% 4.0% 180 2.85E-02 2.85E-02 0.05% 2.34E-01 2.34E-01 0.01% 

0.8 40% 2.0% 4.0% 360 5.72E-02 5.72E-02 0.06% 2.69E-01 2.69E-01 0.01% 

0.8 40% 2.0% 4.0% 720 9.75E-02 9.74E-02 0.06% 3.20E-01 3.20E-01 0.02% 

0.8 40% 8.0% 0.0% 180 3.85E-02 3.85E-02 0.02% 1.99E-01 1.99E-01 0.00% 

0.8 40% 8.0% 0.0% 360 8.35E-02 8.35E-02 0.04% 2.07E-01 2.07E-01 0.01% 

0.8 40% 8.0% 0.0% 720 1.59E-01 1.59E-01 0.04% 2.11E-01 2.11E-01 0.02% 

0.8 40% 8.0% 4.0% 180 3.38E-02 3.38E-02 0.04% 2.10E-01 2.10E-01 0.01% 
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Table 91 Continued 

0.8 40% 8.0% 4.0% 360 7.04E-02 7.04E-02 0.05% 2.25E-01 2.25E-01 0.01% 

0.8 40% 8.0% 4.0% 720 1.26E-01 1.26E-01 0.06% 2.39E-01 2.39E-01 0.02% 

0.9 20% 2.0% 0.0% 180 1.99E-02 1.99E-02 0.05% 1.10E-01 1.10E-01 0.01% 

0.9 20% 2.0% 0.0% 360 4.15E-02 4.15E-02 0.05% 1.22E-01 1.22E-01 0.02% 

0.9 20% 2.0% 0.0% 720 7.70E-02 7.70E-02 0.04% 1.38E-01 1.38E-01 0.02% 

0.9 20% 2.0% 4.0% 180 1.54E-02 1.54E-02 0.08% 1.23E-01 1.23E-01 0.01% 

0.9 20% 2.0% 4.0% 360 2.96E-02 2.96E-02 0.08% 1.45E-01 1.45E-01 0.02% 

0.9 20% 2.0% 4.0% 720 4.87E-02 4.86E-02 0.07% 1.79E-01 1.79E-01 0.02% 

0.9 20% 8.0% 0.0% 180 2.75E-02 2.75E-02 0.03% 8.83E-02 8.83E-02 0.01% 

0.9 20% 8.0% 0.0% 360 6.16E-02 6.16E-02 0.03% 8.47E-02 8.47E-02 0.01% 

0.9 20% 8.0% 0.0% 720 1.24E-01 1.24E-01 0.03% 7.64E-02 7.64E-02 0.01% 

0.9 20% 8.0% 4.0% 180 2.18E-02 2.18E-02 0.05% 1.00E-01 1.00E-01 0.01% 

0.9 20% 8.0% 4.0% 360 4.58E-02 4.57E-02 0.05% 1.04E-01 1.04E-01 0.02% 

0.9 20% 8.0% 4.0% 720 8.43E-02 8.43E-02 0.05% 1.06E-01 1.06E-01 0.02% 

0.9 40% 2.0% 0.0% 180 6.72E-02 6.72E-02 0.05% 1.57E-01 1.57E-01 0.02% 

0.9 40% 2.0% 0.0% 360 1.12E-01 1.12E-01 0.04% 1.92E-01 1.92E-01 0.02% 

0.9 40% 2.0% 0.0% 720 1.78E-01 1.78E-01 0.04% 2.39E-01 2.39E-01 0.03% 

0.9 40% 2.0% 4.0% 180 5.99E-02 5.99E-02 0.05% 1.68E-01 1.68E-01 0.02% 

0.9 40% 2.0% 4.0% 360 9.55E-02 9.55E-02 0.05% 2.11E-01 2.11E-01 0.02% 

0.9 40% 2.0% 4.0% 720 1.41E-01 1.41E-01 0.06% 2.71E-01 2.71E-01 0.03% 

0.9 40% 8.0% 0.0% 180 7.70E-02 7.70E-02 0.04% 1.38E-01 1.38E-01 0.02% 

0.9 40% 8.0% 0.0% 360 1.33E-01 1.33E-01 0.04% 1.56E-01 1.56E-01 0.03% 

0.9 40% 8.0% 0.0% 720 2.20E-01 2.20E-01 0.04% 1.72E-01 1.72E-01 0.03% 

0.9 40% 8.0% 4.0% 180 6.90E-02 6.89E-02 0.05% 1.48E-01 1.48E-01 0.02% 

0.9 40% 8.0% 4.0% 360 1.14E-01 1.14E-01 0.05% 1.73E-01 1.73E-01 0.03% 

0.9 40% 8.0% 4.0% 720 1.77E-01 1.77E-01 0.05% 1.98E-01 1.98E-01 0.04% 

1 20% 2.0% 0.0% 180 6.12E-02 6.12E-02 0.04% 5.13E-02 5.12E-02 0.05% 

1 20% 2.0% 0.0% 360 8.92E-02 8.91E-02 0.04% 6.94E-02 6.93E-02 0.05% 

1 20% 2.0% 0.0% 720 1.31E-01 1.31E-01 0.03% 9.17E-02 9.17E-02 0.04% 

1 20% 2.0% 4.0% 180 5.07E-02 5.07E-02 0.05% 6.06E-02 6.06E-02 0.04% 

1 20% 2.0% 4.0% 360 6.80E-02 6.80E-02 0.05% 8.74E-02 8.74E-02 0.04% 

1 20% 2.0% 4.0% 720 8.81E-02 8.81E-02 0.05% 1.26E-01 1.26E-01 0.04% 

1 20% 8.0% 0.0% 180 7.71E-02 7.70E-02 0.03% 3.79E-02 3.78E-02 0.07% 

1 20% 8.0% 0.0% 360 1.21E-01 1.21E-01 0.03% 4.42E-02 4.41E-02 0.06% 

1 20% 8.0% 0.0% 720 1.94E-01 1.94E-01 0.03% 4.63E-02 4.63E-02 0.05% 

1 20% 8.0% 4.0% 180 6.50E-02 6.49E-02 0.04% 4.55E-02 4.55E-02 0.06% 

1 20% 8.0% 4.0% 360 9.54E-02 9.53E-02 0.04% 5.77E-02 5.77E-02 0.05% 

1 20% 8.0% 4.0% 720 1.39E-01 1.39E-01 0.04% 6.83E-02 6.82E-02 0.05% 

1 40% 2.0% 0.0% 180 1.17E-01 1.17E-01 0.03% 1.07E-01 1.07E-01 0.04% 

1 40% 2.0% 0.0% 360 1.67E-01 1.67E-01 0.03% 1.47E-01 1.47E-01 0.04% 

1 40% 2.0% 0.0% 720 2.38E-01 2.38E-01 0.04% 1.99E-01 1.99E-01 0.04% 

1 40% 2.0% 4.0% 180 1.06E-01 1.06E-01 0.04% 1.16E-01 1.16E-01 0.04% 

1 40% 2.0% 4.0% 360 1.44E-01 1.44E-01 0.04% 1.64E-01 1.64E-01 0.04% 

1 40% 2.0% 4.0% 720 1.91E-01 1.91E-01 0.05% 2.29E-01 2.29E-01 0.04% 

1 40% 8.0% 0.0% 180 1.31E-01 1.31E-01 0.03% 9.17E-02 9.17E-02 0.04% 

1 40% 8.0% 0.0% 360 1.94E-01 1.94E-01 0.03% 1.17E-01 1.17E-01 0.04% 

1 40% 8.0% 0.0% 720 2.88E-01 2.88E-01 0.03% 1.40E-01 1.40E-01 0.05% 

1 40% 8.0% 4.0% 180 1.19E-01 1.19E-01 0.04% 9.97E-02 9.97E-02 0.04% 

1 40% 8.0% 4.0% 360 1.69E-01 1.69E-01 0.04% 1.31E-01 1.31E-01 0.04% 
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1 40% 8.0% 4.0% 720 2.35E-01 2.35E-01 0.05% 1.64E-01 1.64E-01 0.05% 

1.1 20% 2.0% 0.0% 180 1.29E-01 1.29E-01 0.01% 1.95E-02 1.95E-02 0.08% 

1.1 20% 2.0% 0.0% 360 1.56E-01 1.56E-01 0.02% 3.63E-02 3.63E-02 0.07% 

1.1 20% 2.0% 0.0% 720 1.98E-01 1.98E-01 0.02% 5.92E-02 5.91E-02 0.06% 

1.1 20% 2.0% 4.0% 180 1.13E-01 1.13E-01 0.01% 2.45E-02 2.45E-02 0.06% 

1.1 20% 2.0% 4.0% 360 1.25E-01 1.25E-01 0.02% 4.85E-02 4.84E-02 0.05% 

1.1 20% 2.0% 4.0% 720 1.41E-01 1.41E-01 0.02% 8.59E-02 8.59E-02 0.05% 

1.1 20% 8.0% 0.0% 180 1.52E-01 1.52E-01 0.01% 1.31E-02 1.31E-02 0.12% 

1.1 20% 8.0% 0.0% 360 1.98E-01 1.98E-01 0.02% 2.11E-02 2.10E-02 0.11% 

1.1 20% 8.0% 0.0% 720 2.75E-01 2.75E-01 0.02% 2.72E-02 2.72E-02 0.10% 

1.1 20% 8.0% 4.0% 180 1.34E-01 1.34E-01 0.01% 1.68E-02 1.68E-02 0.09% 

1.1 20% 8.0% 4.0% 360 1.63E-01 1.63E-01 0.02% 2.93E-02 2.93E-02 0.09% 

1.1 20% 8.0% 4.0% 720 2.06E-01 2.06E-01 0.03% 4.27E-02 4.27E-02 0.09% 

1.1 40% 2.0% 0.0% 180 1.80E-01 1.80E-01 0.02% 7.05E-02 7.05E-02 0.05% 

1.1 40% 2.0% 0.0% 360 2.31E-01 2.31E-01 0.02% 1.12E-01 1.12E-01 0.05% 

1.1 40% 2.0% 0.0% 720 3.05E-01 3.05E-01 0.03% 1.66E-01 1.66E-01 0.06% 

1.1 40% 2.0% 4.0% 180 1.66E-01 1.66E-01 0.02% 7.74E-02 7.74E-02 0.05% 

1.1 40% 2.0% 4.0% 360 2.03E-01 2.03E-01 0.03% 1.26E-01 1.26E-01 0.04% 

1.1 40% 2.0% 4.0% 720 2.48E-01 2.48E-01 0.04% 1.94E-01 1.94E-01 0.05% 

1.1 40% 8.0% 0.0% 180 1.98E-01 1.98E-01 0.02% 5.92E-02 5.91E-02 0.06% 

1.1 40% 8.0% 0.0% 360 2.64E-01 2.64E-01 0.02% 8.68E-02 8.68E-02 0.06% 

1.1 40% 8.0% 0.0% 720 3.62E-01 3.62E-01 0.03% 1.14E-01 1.14E-01 0.07% 

1.1 40% 8.0% 4.0% 180 1.83E-01 1.83E-01 0.02% 6.53E-02 6.52E-02 0.06% 

1.1 40% 8.0% 4.0% 360 2.33E-01 2.33E-01 0.03% 9.88E-02 9.88E-02 0.06% 

1.1 40% 8.0% 4.0% 720 2.99E-01 2.99E-01 0.04% 1.36E-01 1.36E-01 0.07% 

1.2 20% 2.0% 0.0% 180 2.16E-01 2.16E-01 0.00% 6.16E-03 6.16E-03 0.03% 

1.2 20% 2.0% 0.0% 360 2.37E-01 2.37E-01 0.00% 1.76E-02 1.76E-02 0.05% 

1.2 20% 2.0% 0.0% 720 2.76E-01 2.76E-01 0.01% 3.72E-02 3.72E-02 0.07% 

1.2 20% 2.0% 4.0% 180 1.94E-01 1.94E-01 0.00% 8.23E-03 8.23E-03 0.07% 

1.2 20% 2.0% 4.0% 360 1.98E-01 1.98E-01 0.00% 2.50E-02 2.50E-02 0.02% 

1.2 20% 2.0% 4.0% 720 2.04E-01 2.04E-01 0.01% 5.71E-02 5.71E-02 0.04% 

1.2 20% 8.0% 0.0% 180 2.43E-01 2.43E-01 0.00% 3.76E-03 3.76E-03 0.05% 

1.2 20% 8.0% 0.0% 360 2.86E-01 2.86E-01 0.01% 9.32E-03 9.31E-03 0.13% 

1.2 20% 8.0% 0.0% 720 3.63E-01 3.63E-01 0.01% 1.56E-02 1.56E-02 0.14% 

1.2 20% 8.0% 4.0% 180 2.21E-01 2.21E-01 0.00% 5.14E-03 5.14E-03 0.00% 

1.2 20% 8.0% 4.0% 360 2.44E-01 2.44E-01 0.01% 1.38E-02 1.38E-02 0.09% 

1.2 20% 8.0% 4.0% 720 2.82E-01 2.82E-01 0.02% 2.61E-02 2.60E-02 0.11% 

1.2 40% 2.0% 0.0% 180 2.55E-01 2.55E-01 0.01% 4.53E-02 4.53E-02 0.05% 

1.2 40% 2.0% 0.0% 360 3.04E-01 3.04E-01 0.01% 8.42E-02 8.41E-02 0.05% 

1.2 40% 2.0% 0.0% 720 3.78E-01 3.78E-01 0.03% 1.39E-01 1.39E-01 0.07% 

1.2 40% 2.0% 4.0% 180 2.37E-01 2.37E-01 0.01% 5.04E-02 5.04E-02 0.04% 

1.2 40% 2.0% 4.0% 360 2.69E-01 2.69E-01 0.02% 9.62E-02 9.62E-02 0.05% 

1.2 40% 2.0% 4.0% 720 3.11E-01 3.11E-01 0.03% 1.64E-01 1.64E-01 0.07% 

1.2 40% 8.0% 0.0% 180 2.76E-01 2.76E-01 0.01% 3.72E-02 3.72E-02 0.07% 

1.2 40% 8.0% 0.0% 360 3.41E-01 3.41E-01 0.02% 6.41E-02 6.40E-02 0.07% 

1.2 40% 8.0% 0.0% 720 4.41E-01 4.41E-01 0.03% 9.36E-02 9.36E-02 0.10% 
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Table 91 Continued 

1.2 40% 8.0% 4.0% 180 2.57E-01 2.57E-01 0.01% 4.16E-02 4.16E-02 0.06% 

1.2 40% 8.0% 4.0% 360 3.04E-01 3.04E-01 0.02% 7.40E-02 7.39E-02 0.07% 

1.2 40% 8.0% 4.0% 720 3.68E-01 3.68E-01 0.03% 1.13E-01 1.13E-01 0.09% 
   (a)   Comparison is made with Black-Scholes formula with σ = standard deviation of returns; rf = riskless 
rate of interest; q = dividend yield; and T = time to expiration 
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APPENDIX K:  PIP RESULTS 

 

 

Impact of PIP-Light infusion on the engine operations in different market segments 

Ease of Access to Capital Markets Limited Access to Capital Markets 

 

Average 
Take-
Off 

Derate 

Severity 
 Factor 

Fuel-burn 
Difference 

CO2 
Emission 

Difference 

Maintenance 
Cost 

Difference 

Fuel-Burn 
Difference 

CO2 
Emission 

Difference 

Maintenance 
Cost 

Difference 

Ops. Between 
0-199 nm 

17% 1.48 138,874 1,355,262 669,876 138,874 1,355,262 669,876 

Ops. between 
200-399 nm 

15% 1.21 184,987 1,805,269 144,158 184,987 1,805,269 144,158 

Ops. between 
400-599 nm 

14% 1.14 237,448 2,317,231 50,981 237,448 2,317,231 50,981 

Ops. between 
600-799 nm 

14% 1.08 234,833 2,291,717 16,935 234,833 2,291,717 16,935 

Ops. between 
800-999 nm 

13% 1.04 282,643 2,758,292 59,492 282,643 2,758,292 59,492 

Ops. between 
1000-1199 nm 

12% 1.04 330,449 3,224,826 109,158 330,449 3,224,826 109,158 

Ops. between 
1200-1399 nm 

8% 1.17 235,881 2,301,945 6,400 235,881 2,301,945 6,400 

Ops. between 
1400-1599 nm 

5% 1.33 274,755 2,681,307 10,520 274,755 2,681,307 10,520 

Ops. between 
1600-1799 nm 

1% 1.53 306,023 2,986,452 49,045 306,023 2,986,452 49,045 

Ops. between 
1800-1999 nm 

0% 1.57 335,760 3,276,649 51,830 335,760 3,276,649 51,830 

Ops. between 
2000-3500 nm 

0% 1.59 380,059 3,708,961 51,450 380,059 3,708,961 51,450 
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APPENDIX L:  VERIFICATION DEFINITIONS 

 

In this section, definitions of terms commonly used during the verification are provided. 

Emphasis is put on the specific circumstances in which these terms are used.  

 

Probability distribution: 

A probability distribution is a function that assigns a probability to each measurable 

subset of the outcomes of a random survey. In other terms, it is a statement about the 

frequency of outcomes. In the context of this thesis, the terms “probability distributions” 

and “probability measures” are used interchangeably.  

 

Population distribution: 

In the context of this thesis, population distributions or simply distributions are rarely 

used “as is” because they usually have infinite support. Instead, sampling from 

population distributions is performed. The term distribution refers to the entity 

(population and associated probability measure) from which a sample is drawn or from 

which a sample is assumed to be drawn. 

 

Sample: 

A sample is a subset of a population. In the context of this thesis, a sample is a set of 

independently and identically distributed experimental realizations. When performing 

Monte Carlo analyses, the set consisting of all Monte Carlo realizations constitutes a 

sample.  
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Trial: 

A trial or simply a test is a procedure that can be infinitely repeated and that corresponds 

to the examination of a single test case. In the context of this thesis, most trials are 

random in that they may have more than one possible outcome. The terms “trial” and 

“test” are used interchangeably. 

 

Experiment: 

In the context of thesis, an experiment is a collection of several independent trials 

performed to study the variability of their outcomes and to subject these outcomes to 

Empirical distribution: 

The empirical probability distribution is the ratio of the number of times a specific 

outcomes occurred to the total number of trials performed in an experiment. In this 

research, empirical distributions estimate probabilities from experiences and observations 

and are constructed from samples usually generated via Monte Carlo simulations. The 

terms “empirical distribution” and “experimental distribution” are used interchangeably. 

Test case: 

A test case is a set of all relevant parameters used to perform a trial. In the context of this 

thesis, a test case is defined by a list of conditions and variables under which a trial is 

performed. For option pricing purposes, a test case may be defined by the type of 

stochastic process used as well as its parameterization. The terms “test case” and “test 

scenario” are used interchangeably. 
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statistical hypothesis testing. In this sense, an experiment is a composed experiment in 

which each individual repetition is a trial. 

 

Statistical hypothesis testing: 

Statistical hypothesis testing is a method of statistical inference used for testing a 

statistical hypothesis. Results from such tests are called statistically significant if they are 

predicted to be unlikely to occur by sampling error alone using a threshold probability 

called the significance level. 

 

Null hypothesis: 

The null hypothesis is a hypothesis being tested in an attempt to either disprove, reject or 

nullify it. During statistical hypothesis testing, the observed sample results are compared 

with the distribution under the null hypothesis and the likelihood of finding the obtained 

results is thereby determined.  In the context of thesis, the null hypothesis is assumed to 

be true unless evidence indicates otherwise. 

 

 

 

p-value: 

During hypothesis testing, the p-value helps determine the significance of results: it is 

defined as the probability of finding the observed sample results, or more extreme results, 

when the null hypothesis is actually true. In the context of this thesis, p-values are 

computed to check how different an experimental empirical probability distribution is 

from an expected theoretical probability distribution. 
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Test statistic: 

A test statistic is a measure of an attribute of a sample. In statistical hypothesis testing, 

the null hypothesis test is usually formulated in terms of a test statistic considered as a 

numerical summary of the data contained within the sample. In the context of this thesis, 

test statistics are constructed to perform hypothesis testing regarding the means of 

samples, the empirical distribution functions of samples, and the options prices. 
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